MATLAB 07 1/32

MATLAB Classes and Objects

This chapter describes how to define your own elags MATLAB. Classes and objects enable you torasie
data types and new operations to MATLAB. Tdhass of a variable describes the structure of the wéiand
indicates the kinds of operations and functions ¢ha apply to the variable. Abject is an instance of a
particular class. The phrasbject-oriented programming describes an approach to writing programs that
emphasizes the use of classes and objects.

Classes and Objects: An Overview

All MATLAB data types are implemented as objectenitied classes. You can add data types of your own t
your MATLAB environment by creating additional ct&s. These user-defined classes define the steumftur
your new data type, and the M-file functionsnaathods, that you write for each class define the behafdor
that data type.

These methods can also define the way various MAH bferators, including arithmetic operations, supsc
referencing, and concatenation, apply to the ne& ty@es. For example, a class calleginomial might
redefine the addition operator (+) so that it coitgeperforms the operation of addition on polynalsi

With MATLAB classes you can

o Create methods that override existing MATLAB funaility

¢ Restrict the operations that are allowed on anoblgiea class

¢ Enforce common behavior among related classeshgyritmg from the same parent class
e Significantly increase the reuse of your code

Read more about MATLAB classes@iasses and Objects

You can view classes as new data types havingfgpkehaviors defined for the class. For example, a
polynomial class might redefine the addition oparét) so that it correctly performs the operatofraddition
on polynomials. Operations defined to work withemttg of a particular class are knowmashods of that
class.

You can also view classes as new items that youreahas single entities. An example is an arrbjea that
MATLAB can display on graphs (perhaps composed AfTMAB line and patch objects) and that has
properties like a Handle Graphics object. You caate an arrow simply by instantiating the arroassl

You can add classes to your MATLAB environment pgafying a MATLAB structure that provides data
storage for the object and creating a class dingctontaining M-files that operate on the objedie$e M-files
contain the methods for the class. The class dingcian also include functions that define the wagous
MATLAB operators, including arithmetic operatiorssibscript referencing, and concatenation, apptii¢o
objects. Redefining how a built-in operator worgs your class is known aserloading the operator.

Featur es of Object-Oriented Programming

When using well-designed classes, object-orientedramming can significantly increase code reusk an
make your programs easier to maintain and extergirmming with classes and objects differs frodirary
structured programming in these important ways:

e Function and operator overloading. You can create methods that override existing MAB

functions. When you call a function with a usernded object as an argument, MATLAB first checks to
see if there is a method defined for the objetdissc If there is, MATLAB calls it, rather than thermal

29. 11. 200

MATLAB 07 2/32

MATLAB function.

e Encapsulation of data and methods. Object properties are not visible from the comchiame; you can
access them only with class methods. This prothetsbject properties from operations that are not
intended for the object's class.

¢ Inheritance. You can create class hierarchies of parent aitd classes in which the child class inherits
data fields and methods from the parent. A chiddglcan inherit from one paredinfleinheritance) or
many parentsnfultiple inheritance). Inheritance can span one or more generatiohsritance enables
sharing common parent functions and enforcing combehavior amongst all child classes.

e Aggregation. You can create classes usaggregation, in which an object contains other objects. This
is appropriate when an object type is part of agotibject type. For example, a savings accountcobje
might be a part of a financial portfolio object.

MATLAB Data Class Hierarchy
All MATLAB data types are designed to function d&sses in object-oriented programming. The diagram

below shows the fifteen fundamental data typeglgsses) defined in MATLAB. You can add new dafzety/
to MATLAB by extending the class hierarchy.

ARRAY
[full or sparse]

logical char NUMERIC cell structure function
handle

user classes java classes

I
int8, uints,

int16, uint16, single double
int3z2,uint3z,
inté4,uinté4d

The diagram showsser class that inherits from the structure class. All clas#eat you create are structure
based since this is the point in the class hieyandiere you can insert your own classes. (For nrdoematior
about MATLAB data types, see the section on "DatpeB.")

Creating Objects

You create an object by calling the class consbrnuhd passing it the appropriate input arguments.
MATLAB, constructors have the same name as thesclame. For example, the statement,

p = polynom([1 0 -2 -5]);
creates an object nampdbelonging to the clag®lynom . Once you have created a polynom object, you can

operate on the object using methods that are dkforehepolynom class. Se&xample-- A Polynomial Class
for a description of thegolynom class.

Invoking Methods on Objects

Class methods are file functions that take an object as one of thmutrarguments. The methods for a spe
class must be placed in the class directory fdrdlass (the@| ass_nane directory). This is the first place that

29. 11. 200

MATLAB 07 3/32

MATLAB looks to find a class method.

The syntax for invoking a method on an objectmsilsir to a function call. Generally, it looks like
[outl,out2,...] = met hod_nane(object,argl,arg2, ...);

For example, suppose a user-defined class gallgtbm has achar method defined for the class. This

method converts a polynom object to a charactergsénd returns the string. This statement caésliar

method on the polynom objeet

s = char(p);

Using theclass function, you can confirm that the returned valus a character string.

class(s)ans =
char
S
S =
X"3-2*x-5

You can use thaethods command to produce a list of all of the methodd #re defined for a class.
Private Methods

Private methods can be called only by other metlobdseir class. You define private methods by pigdhe
associated M-files in private subdirectory of th& | ass_nane directory. In the example,

@ ass_namne/private/update_obj.m

the methodipdate_obj has scope only within the ass_nane class. This means thaidate_obj can be
called by any method that is defined in @€ass_name directory, but it cannot be called from the MATLAB
command line or by methods outside of the classctbry, including parent methods.

Private methods and private functions differ int flvdvate methods (in fact all methods) have arcigs one
of their input arguments and private functions da You can use private functions as helper fumsticuch &
described in the next section.

Helper Functions

In designing a class, you may discover the neetufastions that perform support tasks for the ¢lass do nc
directly operate on an object. These functionsaledhelper functions. A helper function can be a
subfunction in a class method file or a privatection. When determining which version of a partaul
function to call, MATLAB looks for these functioms the order listed above. For more informationwtibe
order in which MATLAB calls functions and methodeeHow MATLAB Determines Which Method to Call

Debugging Class M ethods

You can use the MATLAB debugging commands with obpeethods in the same way that you use them with
other M-files. The only difference is that you neednclude the class directory name before thenotehame

in the command call, as shown in this example ugagp .

dbstop @polynom/char

While debugging a class method, you have accesl$ toethods defined for the class, including intesti
methods, private methods, and private funct

29. 11. 200

MATLAB 07 4/32

Changing Class Definition
If you change the class definition, such as thelmemor names of fields in a class, you must issue a

clear classes

command to propagate the changes to your MATLARBIeas This command also clears all objects from the
workspace. See thiear command help entry for more information.

Setting Up Class Directories

The M-files defining the methods for a class akected together in a directory referred to asdlass
directory. The directory name is formed with thassl name preceded by the character @. For exaoma@f
the examples used in this chapter is a class imglpolynomials in a single variable. The namehef tlass,
and the name of the class constructoppighom . The M-files defining a polynomial class wouldlbeated in
directory with the nam@polynom.

The class directories are subdirectories of dirgez¢an the MATLAB search path, but are not theregbn
the path. For instancehe new@polynom directory could be a subdirectory of the MATLAB rking directory
or your own personal directory that has been atlolélae search path.

Adding the Class Directory tothe MATLAB Path

After creating the class directory, you need toaipdhe MATLAB path so that MATLAB can locate tHass
source files. The class directory should not beatlly on the MATLAB path. Instead, you should add t
parent directory to the MATLAB path. For examplethie @polynom class directory is located at

c:\my_classes\@polynom
you add the class directory to the MATLAB path wiitleaddpath command
addpath c:\my_classes;
If you create a class directory with the same namanother class, MATLAB treats the two class dinees as

a single directory when locating class methods.rkore information, selow MATLAB Determines Which
Method to Call

Data Structure

One of the first steps in the design of a new d&dise choice of the data structure to be useithdyglass.
Objects are stored in MATLAB structures. The fietdghe structure, and the details of operationghen
fields, are visible only within the methods for ttlass. The design of the appropriate data strectan affect
the performance of the code.

Tipsfor C++ and Java Programmers

If you are accustomed to programming in other dbgeiented languages, such as C++ or Java, youindll
that the MATLAB programming language differs frohese languages in some important ways:

e In MATLAB, method dispatching is not syntax basasl,t is in C++ and Java. When the argument list
contains objects of equal precedence, MATLAB ubkedéft-most object to select the method to call.

¢ In MATLAB, there is no equivalent to a destructoetimod. To remove an object from the workspace,
use theclear function.

o Construction of MATLAB data types occurs at runtiméher than compile time. You register an ob

29. 11. 200

MATLAB 07 5132

as belonging to a class by calling titess function.

e When using inheritance in MATLAB, the inheritan&tationship is established in the child class by
creating the parent object, and then callingctass function. For more information on writing
constructors for inheritance relationships, Badding on Other Classes

e When using inheritance in MATLAB, the child objexintains a parent object in a property with the
name of the parent class.

e In MATLAB, there is no passing of variables by reflece. When writing methods that update an object,
you must pass back the updated object and usesymagent statement. For instance, this call tethe
method updates theme field of the objec and returns the updated object.

A = set(A,'name’,"John Smith");

e In MATLAB, there is no equivalent to an abstracsd.

e In MATLAB, there is no equivalent to the C++ scogpioperator.

e In MATLAB, there is no virtual inheritance or vidlibase classes.
e In MATLAB, there is no equivalent to C++ templates.

Designing User Classesin MATLAB

This section discusses how to approach the desigrtlass and describes the basic set of methatisiiould
be included in a class.

The MATLAB Canonical Class

When you design a MATLAB class, you should incladgtandard set of methods that enable the class to
behave in a consistent and logical way within thr&IMAB environment. Depending on the nature of thess
you are defining, you may not need to include aithese methods and you may include a number @froth
methods to realize the class's design goals.

This table lists the basic methods included in MABLclasses.

Class Method Description
class constructor Creates an object of the class
display Called whenever MATLAB displays the contents ofodofect (e.g., when an

expression is entered without terminating with miselon)

set andget Accesses class properties

subsref andsubsasgn | Enables indexed reference and assignment for bgecte

end Supportsnd syntax in indexing expressions using an objegt; &(1:end)

subsindex Supports using an object in indexing expressions

converters likelouble | Methods that convert an object to a MATLAB datagyp
andchar

The following sections discuss the implementatibaaxch type of method, as well as providing refeesrto
examples used in this chapter.

The Class Constructor Method

The @ directory for a particular class must congairM-file known as theonstructor for that class. The name
of the constructor is the same as the name ofiteetdry (excluding the @ prefix and extension) that

29. 11. 200

MATLAB 07 6/32

defines the name of the class. The constructotesdhe object by initializing the data structund a
instantiating an object of the class.

Guidelinesfor Writing a Constructor

Class constructors must perform certain functianghat objects behave correctly in the MATLAB
environment. In general, a class constructor mastile three possible combinations of input argument

e No input arguments
¢ An object of the same class as an input argument
¢ The input arguments used to create an object aflttss (typically data of some kind)

No Input Arguments. If there are no input arguments, the construstould create a default object. Since
there are no inputs, you have no data from whidreate the object, so you simply initialize thgegbs data
structures with empty or default values, call¢lags function to instantiate the object, and returndbgect a:
the output argument. Support for this syntax isinegl for two reasons:

o When loading objects into the workspace,ltag function calls the class constructor with no
arguments.

o When creating arrays of objects, MATLAB calls thass constructor to add objects to the array.

Object Input Argument. If the first input argument in the argument issein object of the same class, the
constructor should simply return the object. Ussaigh function to determine if an argument is a memifer o
class. Se®verloading the + Operatéor an example of a method that uses this consirsyntax.

Data Input Arguments. If the input arguments exist and are not objetthe same class, then the
constructor creates the object using the input daftaourse, as in any function, you should perfpnoper
argument checking in your constructor functionypital approach is to usevarargin _ input argument and a
switch statement to control program flow. This providasasy way to accommodate the three cases: no
inputs, object input, or the data inputs used éat& an object.

It is in this part of the constructor that you gesvalues to the object's data structure, calttlss function to
instantiate the object, and return the object astiiput argument. If necessary, place the ohjeahiobject
hierarchy using theuperiorto andinferiorto functions.

Using the class Function in Constructors

Within a constructor method, you use thess function to associate an object structure witladigular class.
This is done using an internal class tag that ig aocessible using th#ass andisa functions. For example,
this call to theclass function identifies the objegtto be of typepolynom .

p = class(p,'polynom);
Examples of Constructor Methods

See the following sections for examples of construmethods:

The Polynom Constructor Method
The Asset Constructor Method
The Stock Constructor Method
The Portfolio Constructor Method

I dentifying Objects Outside the Class Directory

29. 11. 200

MATLAB 07 7132

Theclass andisa functions used in constructor methods can alsaske outside of the class directory. The
expression

isa(a,'class_name');

checks whethex is an object of the specified class. For examiplejs a polynom object, each of the
following expressions is true.

isa(pi,'double");
isa('hello’,'char");

isa(p,'polynom");

Outside of the class directory, thless function takes only one argument (it is only withine constructor th.
class can have more than one argument).

The expression
class(a)
returns a string containing the class name. ¢for example,

class(pi),
class(‘'hello"),
class(p)

return

‘double’,
‘char’,
‘polynom’

Use thewhos function to see what objects are in the MATLAB Ww&pace.

whos
Name Size Bytes Class
p 1x1 156 polynom object

Thedisplay Method

MATLAB calls a method namedisplay whenever an object is the result of a statemexttishnot terminated
by a semicolon. For example, creating the variapighich is a double, calls the MATLABsplay method
for doubles.

a=5
a

ENTIT

You should define display method so MATLAB can display values on the commiamelwhen referencing
objects from your class. In many classisplay can simply print the variable name, and then heetar
converter method to print the contents or valuthefvariable, since MATLAB displays output as sisnYou
must define thehar method to convert the object's data to a charatieg.

Examples of display M ethods

See the following sections for exampleglisplay methods:

29. 11. 200

MATLAB 07 8/32

The Polynom display Method
The Asset display Method
The Stock display Method
e The Portfolio display Method

Accessing Object Data

You need to write methods for your class that pe\access to an object's data. Accessor methodsseam
variety of approaches, but all methods that chatgect data always accept an object as an inpunaggt an(
return a new object with the data changed. Thieessary because MATLAB does not support passing
arguments by reference (i.e., pointers). Functaamschange only their private, temporary copy oblaject.
Therefore, to change an existing object, you mresite a new one, and then replace the old one.

The following sections provide more detail abouplementation techniques for thet , get , subsasgn , and
subsref methods.

The set and get Methods

Theset andget methods provide a convenient way to access obd@atin certain cases. For example,
suppose you have created a class that definesam abject that MATLAB can display on graphs (pgrba
composed of existing MATLAB line and patch objects)

To produce a consistent interface, you could defgheandget methods that operate on arrow objects the way
the MATLAB set andget functions operate on built-in graphics objectse3&1 andget verbs convey what
operations they perform, but insulate the user floeninternals of the object.

Examples of set and get Methods

See the following sections for examples@f andget methods:

e The Asset get MethodndThe Asset set Method
e The Stock get MethodndThe Stock set Method

Property Name M ethods

As an alternative to a genesal method, you can write a method to handle the asségt of an individual
property. The method should have the same nantegsdperty name.

For example, if you defined a class that creat¢sctbrepresenting employee data, you might hefieddain ar
employee object calleshlary . You could then define a method calkethry.m that takes an employee obj
and a value as input arguments and returns thetoljth the specified value set.

Indexed Reference Using subsref and subsasgn

User classes implement new data types in MATLABS liseful to be able to access object data viadexed
reference, as is possible with the MATLAB builtdata types. For example Afis an array of classuble | A

() returns the ! element of.

As the class designer, you can decide what an irefexence to an object means. For example, supjoase
define a class that creates polynomial objectstla@se objects contain the coefficients of the poyial.

An indexed reference to a polynomial obije

29. 11. 200

MATLAB 07 9132

P(3)

could return the value of the coefficientdf the value of the polynomial at
x = 3, or something different depending on the idezhdesign.

You define the behavior of indexing for a particudtass by creating two class methodsbsref and
subsasgn . MATLAB calls these methods whenever a subscripgéerence or assignment is made on an o
from the class. If you do not define these metHoda class, indexing is undefined for objectshi$ tlass.

In general, the rules for indexing objects arestéi@e as the rules for indexing structure arraysdetails, see
Structures

Handling Subscripted Reference

The use of a subscript or field designator wittobject on the right-hand side of an assignmengeistant is
known as aubscripted reference. MATLAB calls a method nameslibsref in these situations.

Object subscripted references can be of three feransarray index, a cell array index, and a stmactield
name:

A(l)

A{l}
A field

Each of these results in a call by MATLAB to thésref method in the class directory. MATLAB passes
arguments teubsref .

B = subsref(A,S)
The first argument is the object being referend@ée: second argumers, is a structure array with two fields:

e S.type is a string containing)' ,'{}' ,or. specifying the subscript type. The parenthesezsent
a numeric array; the curly braces, a cell array; tiie dot, a structure array.

e S.subs is a cell array or string containing the actuddssuipts. A colon used as a subscript is passed as
the string:’

For instance, the expression
A(1:2,)
causes MATLAB to calbubsref(A,S) , whereSis a 1-by-1 structure with

S.type ='()'
S.subs ={1:2,""}

Similarly, the expression

A{1:2}

uses
S.type ='{}'
S.subs = {1:2}

29. 11. 200

MATLAB 07 10/32

The expression
A field
callssubsref(A,S) where

S.type ="
S.subs = ‘field'

These simple calls are combined for more complécatéscripting expressions. In such casesth(S) is
the number of subscripting levels. For example,

A(1,2).name(3:4)
callssubsref(A,S), whereS is a 3-by-1 structure array with the values:

S().type ='()' S(2).type="" S(3).type
S(1).subs ='{1,2}' S(2).subs = 'name’ S(3).subs

l()l

{34}

How to Write subsr ef

Thesubsref method must interpret the subscripting expresgiassed in by MATLAB. A typical approach is
to use theswitch statement to determine the type of indexing uselta obtain the actual indices. The

following three code fragments illustrate how ttenpret the input arguments. In each case, thaibmmust
return the value.

For an array index:

switch S.type
case ()’

B = A(S.subs{:});
end

For a cell array:

switch S.type
case '{}'

B = A(S.subs{:}); % A is a cell array
end

For a structure array:

switch S.type

case .
switch S.subs
case ' fieldl
B=A. fieldl;
case ' field2
B=A. field2;
end
end

Examples of the subsref M ethod
See the following sections for examples ofghigsref method:

¢ The Polynom subsref Meth

29. 11. 200

MATLAB 07 11/32

e The Asset subsref Method
¢ The Stock subsref Method
e The Portfolio subsref Method

Handling Subscripted Assignment

The use of a subscript or field designator wittobject on the lefhand side of an assignment statement is
known as aubscripted assignment. MATLAB calls a method nameglibsasgn in these situations. Object
subscripted assignment can be of three forms frag andex, a cell array index, and a structurklfreame.

A(l)=B
A{l} =B
Afield = B

Each of these results in a callstdbsasgn of the form
A = subsasgn(A,S,B)

The first arguments, is the object being referenced. The second argty®ehas the same fields as those used
with subsref . The third argumeng, is the new value.

Examples of the subsasgn Method
See the following sections for examples of ¢higsasgn method:

e The Asset subsasgn Method
e The Stock subsasgn Method

Object Indexing Within Methods

If a subscripted reference is made within a clasthod, MATLAB uses its built-isubsref function to acces
data within the method's own class. If the methazkases data from another class, MATLAB calls the
overloadedsubsref function in that class. The same holds true ftasstipted assignment andbsasgn .

The following example shows a methasbtref |, that is defined in the classpployee . This method makes a
reference to a fieldyddress , in an object of its own class. For this, MATLARBas the built-isubsref
function. It also references the same field in haotlass, this time using the overloadeigsref of that class.

% ---- EMPLOYEE class method: testref.m ----
function testref(myclass,otherclass)

myclass.address % use built-in subs ref
otherclass.address % use overloaded su bsref

The example creates amployee object and @aompany object.

empl = employee('Johnson','Chicago’);
comp = company('The MathWorks','Natick’);

Theemployee class methodestref | is called. MATLAB uses an overloadegbsref only to access data
outside of the method's own class.

testref(empl,comp)
ans = % built-in subsref was called
Chicago

29. 11. 200

MATLAB 07 12/32

ans = % @company\subsref was calledExecuting @company\subsref ...
Natick

Defining end Indexing for an Object

When you usend in an object indexing expression, MATLAB calls thigect'send class method. If you want
to be able to usend in indexing expressions involving objects of yolass, you must define and method

for your class.

Theend method has the calling sequence

end(a,k,n)

wherea is the user objeck, is the index in the expression where ¢he syntax is used, andis the total
number of indices in the expression.

For example, consider the expression
A(end-1,)
MATLAB calls theend method defined for the objestusing the arguments
end(A,1,2)
That is, theend statement occurs in the first index element aedetlare two index elements. The class method

for end must then return the index value for the last elenof the first dimension. When you implement the
end method for your class, you must ensure it retarmalue appropriate for the object.

Indexing an Object with Another Object

When MATLAB encounters an object as an index, lisdhesubsindex method defined for the object. For
example, suppose you have an obgeahd you want to use this object to index into heobbjecb.

¢ = b(a);

A subsindex method might do something as simple as converiect to double format to be used as an
index, as shown in this sample code.

function d = subsindex(a)

%SUBSINDEX

% convert the object a to double format to be used
% as an index in an indexing expression

d = double(a);

subsindex values are 0-based, not 1-based.
Converter Methods
A converter method is a class method that hasaime stame as another class, sucthas ordouble .

Converter methods accept an object of one clasgpasand return an object of another class. Cdever
enable you to:

¢ Use methods defined for another class
o Ensure that expressions involving objects of migkeds types execute prope

29. 11. 200

MATLAB 07 13/32

A converter function call is of the form

b= class_nane(a)
wherea is an object of a class other thdrass_nane. In this case, MATLAB looks for a method called
cl ass_nane in the class directory for objeat If the input object is already of typéass_name, then
MATLAB calls the constructor, which just returnstimput argument.
Examples of Converter Methods

See the following sections for examples of convartethods:

e The Polynom to Double Converter
e The Polynom to Char Converter

Overloading Operators and Functions

In many cases, you may want to change the behat/tbe MATLAB operators and functions for cases whe
the arguments are objects. You can accomplistbtheserloading the relevant functions. Overloademgbles
a function to handle different types and numberngpfit arguments and perform whatever operation is
appropriate for the highest-precedence object(@gect Precedender more information on object
precedence.

Overloading Operators
Each built-in MATLAB operator has an associatedction name (e.g., the + operator has an associated

plus.m function). You can overload any operator by crepin M-file with the appropriate name in the class
directory. For example, if eith@ror g is an object of typel ass_nane, the expression

p+q

generates a call to a functi@l ass_nane/plus.m , if it exists. Ifp andq are both objects of different classes,
then MATLAB applies the rules of precedence to deiee which method to use.

Examples of Overloaded Operators
See the following sections for examples of overdzhdperators:

e Overloading the + Operator
e Overloading the Operator
e Overloading the * Operator

The following table lists the function names forshof the MATLAB operators.

Operation M-File Description

a+b plus(a,b) Binary addition

a-b minus(a,b) Binary subtraction

-a uminus(a) Unary minus

+a uplus(a) Unary plus

a*b times(a,b) Element-wise multiplication|
|

29. 11. 200

MATLAB 07 14/32

a*b mtimes(a,b) Matrix multiplication

a/b rdivide(a,b) Right element-wise division|
a\b Idivide(a,b) Left element-wise division
alb mrdivide(a,b) Matrix right division

a\b mldivide(a,b) Matrix left division

a."b power(a,b) Element-wise power

a"b mpower(a,b) Matrix power

a<b It(a,b) Less than

a>b gt(a,b) Greater than

a<=b le(a,b) Less than or equal to
a>=b ge(a,b) Greater than or equal to
a~= ne(a,b) Not equal to

a== eq(a,b) Equality

a&b and(a,b) Logical AND

alb or(a,b) Logical OR

~a not(a) Logical NOT

a:d:b colon (a,d,b) Colon operator

ab colon(a,b)

a’ ctranspose(a) Complex conjugate transpdse
a. transpose(a) Matrix transpose

command window output display(@) Display method

[a b] horz cat (a,b,...) Horizontal concatenation
[a; b] vertcat(a,b,...) Vertical concatenation
a(s1,s2,...sn) subsref (a,s) Subscripted reference
a(sl,...sn)=b subsasgn (a,s,b) Subscripted assignment
b(a) subsindex (a) Subscript index

Overloading Functions

You can overload any function by creating a funtid the same name in the class directory. Whemetibn
is invoked on an object, MATLAB always looks in tblass directory before any other location on #ereh

path. To overload thelot function for a class of objects, for example, dyrgdace your version gilot.m in
the appropriate class directory.

Examples of Overloaded Functions

See the following sections for examples of overdmhflinctions:

e Overloading Functions for the Polynom Class
e The Portfolio pie3 Methc

29. 11. 200

MATLAB 07 15/32

Example -- A Polynomial Class

This example implements a MATLAB data type for pawynials by defining a new class called polynom. The
class definition specifies a structure for dataegie and defines a director@®golynom) of methods that opere
on polynom objects.

Polynom Data Structure

The polynom class represents a polynomial withvawector containing the coefficients of powerslod t
variable, in decreasing order. Therefore, a polyobpectp is a structure with a single fielplc , containing
the coefficients. This field is accessible onlyhatthe methods in th@polynom directory.

Polynom Methods

To create a class that is well behaved within t#eTMAB environment and provides useful functionality a
polynomial data type, the polynom class implemémsfollowing methods:

A constructor methogolynom.m

A polynom to double converter

A polynom to char converter

A display method

A subsref method

Overloadedr, -, and* operators

Overloadedoots |, polyval |, plot , anddiff functions

The Polynom Constructor Method
Here is the polynom class construct@polynom/polynom.m

function p = polynom(a)
%POLYNOM Polynomial class constructor.

% p =POLYNOM(v) creates a polynomial object from the vector v,
% containing the coefficients of descending power s of x.
if nargin ==

p.c=I;

p = class(p,'polynom?);
elseif isa(a,'polynom")

p=a
else

p.c =a(:).;

p = class(p,'polynom?);
end

Constructor Calling Syntax
You can call the polynom constructor method witle ohthree different arguments:

o No Input Argument - If you call the constructor @tion with no arguments, it returns a polynom objec
with empty fields.

e Input Argument is an Objectif you call the constructor function with an inmrgument that is alread
polynom object, MATLAB returns the input argumenheisa function (pronounced "is a") checks for
this situation.

o Input Argument is a coefficient vector - If the utpargument is a variable that is not a polynonect)j
reshape it to be a row vector and assign it tocthigeld of the object's structure. Thiess function

29. 11. 200

MATLAB 07 16/32

creates th@olynom object, which is then returned by the constructor.
An example use of thelynom constructor is the statement
p = polynom([1 0 -2 -5])
This creates a polynomial with the specified cagffits.
Converter Methods for the Polynom Class
A converter method converts an object of one dlass object of another class. Two of the most irtgd
converter methods contained in MATLAB classesdaréle andchar . Conversion talouble produces the

MATLAB traditional matrix, although this may not lagpropriate for some classes. Conversiarhdo is
useful for producing printed output.

The Polynom to Double Converter

The double converter method for the polynom classvery simple M-file@polynom/double.m , which
merely retrieves the coefficient vector.

function ¢ = double(p)

% POLYNOM/DOUBLE Convert polynom object to coeffic ient vector.
% ¢ = DOUBLE(p) converts a polynomial object to t he vector ¢
% containing the coefficients of descending power s of x.
C=p.c;

On the objecp,
p = polynom([1 0 -2 -5])

the statement

double(p)
returns

ans =

1 0 -2 -5

The Polynom to Char Converter

The converter to char is a key method becausedymes a character string involving the powersof a
independent variable, Therefore, once you have specifiedhe string returned is a syntactically correct
MATLAB expression, which you can then evaluate.

Here is@polynom/char.m

function s = char(p)
% POLYNOM/CHAR
% CHAR(p) is the string representation of p.c

if all(p.c == 0)
s="0%
else
d = length(p.c) - 1;
s=1;
fora=p.c;
ifa~=0;

29. 11. 200

MATLAB 07 17/32

if ~isempty(s)
ifa>0
s=[s"+1;
else
s=[s"-7;
a=-a;
end
end
fa~=1|d==
s = [s num2str(a)];
ifd>0
s=[s"™];
end
end
ifd>=2
s = [s XN int2str(d)];
elseifd==1
s=[s XY,
end
end
d=d-1;
end
end

Evaluating the Output

If you create the polynom object
p = polynom([1 0 -2 -5]);

and then call thehar method omp
char(p)

MATLAB produces the result

ans =
XN3-2*x -5

The value returned Ishar is a string that you can passt@l once you have defined a scalar valuextdfor
example,

X=3;
eval(char(p))

ans =
16

SeeThe Polynom subsref Methddr a better method to evaluate the polynomial.
The Polynom display M ethod

Here is@polynom/display.m . This method relies on tlwbar method to produce a string representation of the
polynomial, which is then displayed on the scrddns method produces output that is the same adatad
MATLAB output. That is, the variable name is dismd followed by an equal sign, then a blank lihenta

new line with the value.

function display(p)
% POLYNOM/DISPLAY Command window display of a polyn om

disp(");

29. 11. 200

MATLAB 07 18/32

disp([inputname(1),' =)
disp(' ");
disp([' ' char(p)])
disp(' ");
The statement
p = polynom([1 0 -2 -5])

creates a polynom object. Since the statementti'enoinated with a semicolon, the resulting ouiput

XA3- 2% - 5
The Polynom subsref Method
Suppose the design of the polynom class specifegsat subscripted reference tpoynom object causes the
polynomial to be evaluated with the value of the@ejpendent variable equal to the subscript. Thébisg
polynom objecp,

p = polynom([1 0 -2 -5]);

the following subscripted expression returns tHeevaf the polynomial at
x=3 andx=4 .,

p([3 4])
ans =

16 51

subsref Implementation Details

This implementation takes advantage ofdie method already defined in the polynom class talpce an
expression that can then be evaluated.

function b = subsref(a,s)
% SUBSREF
switch s.type

case ()’
ind = s.subs{:};
for k = 1:length(ind)
b(k) = eval(strrep(char(a),'x',num2str(ind(K)));
end
otherwise
error('Specify value for x as p(x)")
end

Once the polynomial expression has been genergtdtebhar method, thetrrep function is used to swap
the passed in value for the charastefheeval function then evaluates the expression and rethmsalue in
the output argument.

Overloading Arithmetic Operatorsfor polynom

Several arithmetic operations are meaningful ognohials and should be implemented for the polymtass
When overloading arithmetic operators, keep in nwhet data types you want to operate on. In thif@e,
theplus , minus , andmtimes methods are defined for the polynom class to leaddition, subtraction, and
multiplication on polynom/polynom and polynom/doglgiombinations of operan

29. 11. 200

MATLAB 07 19/32

Overloading the + Operator
If eitherp orq is a polynom, the expression
p+q

generates a call to a functi@polynom/plus.m , if it exists (unlesg orq is an object of a higher precedence
described irDbject Precedenye

The following M-file redefines the + operator féwetpolynom class.

function r = plus(p,q)

% POLYNOM/PLUS Implement p + g for polynoms.
p = polynom(p);

g = polynom(q);

k = length(g.c) - length(p.c);

r = polynom([zeros(1,k) p.c] + [zeros(1,-k) g.c]);

The function first makes sure that both input argota are polynomials. This ensures that expressucis as
p+l

that involve both a polynom and a double, work ecily. The function then accesses the two coefficie
vectors and, if necessary, pads one of them withsz® make them the same length. The actual addgi
simply the vector sum of the two coefficient vestdfinally, the function calls thelynom constructor a third
time to create the properly typed result.

Overloading the - Operator

You can implement the overloaded minus operatangi)g the same approach as the plus (+) operator.
MATLAB calls @polynom/minus.m to computep-q.

function r = minus(p,q)

% POLYNOM/MINUS Implement p - g for polynoms.
p = polynom(p);

q = polynom(q);

k = length(g.c) - length(p.c);

r = polynom([zeros(1,k) p.c] - [zeros(1,-K) g.c]);

Overloading the* Operator
MATLAB calls the method@polynom/mtimes.m to compute the produptq . The lettemat the beginning of
the function name comes from the fact that it isrtnading the MATLABmatrix multiplication. Multiplicatior

of two polynomials is simply the convolution of theoefficient vectors.

function r = mtimes(p,q)

% POLYNOM/MTIMES Implement p * q for polynoms.
p = polynom(p);

g = polynom(q);

r = polynom(conv(p.c,q.c));

Using the Overloaded Operators
Given the polynom object

p = polynom([1 0 -2 -5])

29. 11. 200

MATLAB 07 20/32

MATLAB calls these two function@polynom/plus.m and@polynom/mtimes.m when you issue the
statements

q=p+l
r=p*q

to produce

q:
XN3 - 2*x - 4

r=
XN6 - 4*xN4 - 9*xN3 + 4*xN2 + 18*x + 20

Overloading Functionsfor the Polynom Class

MATLAB already has several functions for workingtlvpolynomials represented by coefficient vectdisey
should be overloaded to also work with the new poiyg object. In many cases, the overloading methads
simply apply the original function to the coeffinidfield.

Overloading roots for the Polynom Class
The method@polynom/roots.m finds the roots of polynom objects.

function r = roots(p)
% POLYNOM/ROOTS. ROOTS(p) is a vector containing t he roots of p.
r = roots(p.c);

The statement
roots(p)

results in

ans =
2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

Overloading polyval for the Polynom Class

The functionpolyval evaluates a polynomial at a given set of poi@glynom/polyvalm uses nested
multiplication, or Horner's method to reduce thenber of multiplication operations used to compuee t
various powers of x.

function y = polyval(p,x)
% POLYNOM/POLYVAL POLYVAL(p,x) evaluates p at the points x.
y=0;
fora=p.c
y=y*X+a
end

Overloading plot for the Polynom Class
The overloadedlot function uses botot andpolyval . The function selects the domain of the indepet

variable to be slightly larger than an interval t@dming all real roots. Thepplyval is used to evaluate the
polynomial at a few hundred points in the dom

29. 11. 200

MATLAB 07 21/32

function plot(p)

% POLYNOM/PLOT PLOT(p) plots the polynom p.
r = max(abs(roots(p)));

X =(-1.1:0.01:1.2)*r;

y = polyval(p,x);

plot(x,y);

title(char(p))

grid on

Overloading diff for the Polynom Class

The method @polynom/diff.m differentiates a polynomial by reducing the dedrgd and multiplying each
coefficient by its original degree.

function q = diff(p)

% POLYNOM/DIFF DIFF(p) is the derivative of the po lynom p.
C=p.c;

d =length(c) - 1; % degree

g = polynom(p.c(1:d).*(d:-1:1));

Listing Class M ethods
The function call
methods('class_name’)
or its command form
methods class_name
shows all the methods available for a particulassl For theolynom example, the output is

methods polynom
Methods for class polynom:

char |display minus | plot |polynom |roots

diff] double mtimes | plus | polyval subsref

Plotting the two polynom objectsandp calls most of these methods.

X = polynom([1 0]);
p = polynom([1 0 -2 -5]);
plot(diff(p*p + 10*p + 20*x) - 20)

29. 11. 200

MATLAB 07 22/32

B —16%° + B'x
& T T T T T T T

2}

Building on Other Classes

A MATLAB object caninherit properties and behavior from another MATLAB objatthen one object (the
child) inherits from another (the parent), the @tubject includes all the fields of the parent ocbpgnd can call
the parent's methods. The parent methods can abosssfields that a child object inherited frora tharent
class, but not fields new to the child class.

Inheritance is a key feature of object-orientedgproaming. It makes it easy to reuse code by allgwimlid
objects to take advantage of code that existsdoend objects. Inheritance enables a child obgebehave
exactly like a parent object, which facilitates tevelopment of related classes that behave slpilaut are
implemented differently.

There are two kinds of inheritance:

o Simple inheritance, in which a child object inhegharacteristics from one parent class.
o Multiple inheritance, in which a child object inftsrcharacteristics from more than one parent class

This section also discusses a related topic, agfjoeg Aggregation allows one object to containtheoobjec
as one of its fields.

Saving and L oading Objects

You can use the MATLABave andload commands to save and retrieve user-defined objeetsd
from .mat files, just like any other variables.

When you load objects, MATLAB calls the object'asd constructor to register the object in the wmaks.
The constructor function for the object class ymilaading must be able to be called with no irppguments
and return a default object. SGuidelines for Writing a Construc! for more informatior

29. 11. 200

MATLAB 07 23/32

M odifying Objects During Save or Load

When you issue save orload command on objects, MATLAB looks for class methodlkedsaveobj and
loadobj in the class directory. You can overload thesehoud to modify the object before the save or load
operation. For example, you could defingageobj method that saves related data along with thecbbjeyol
could write doadobj method that updates objects to a newer versiom e type of object is loaded into
the MATLAB workspace.

Object Precedence

Object precedence is a means to resolve the qoedtiwhich of possibly many versions of an operator
function to call in a given situation. Object prdeace enables you to control the behavior of espras
containing different classes of objects. For exampbnsider the expression

obj ect A+ objectB

Ordinarily, MATLAB assumes that the objects haveagrecedence and calls the method associatediweith
leftmost object. However, there are two exceptions:

o User-defined classes have precedence over MATLAB-ibclasses.

o User-defined classes can specify their relativegaence with respect to other udefined classes usil
theinferiorto andsuperiorto functions.

For example, in the sectidixample-- A Polynomial Classhe polynom class defineplas method that
enables addition of polynom objects. Given the poty objecp

p = polynom([1 0 -2 -5])

x"3-2*x-5
The expression,

1+p
ans =
x"3-2*x-4

calls the polynonplus method (which converts the double, 1, to a polyrdmect, and then adds it#p. The
user-defined polynom class has precedence ovéM&A¥_AB double class.

Specifying Precedence of User-Defined Classes

You can specify the relative precedence of usenddfclasses by calling tl@eriorto or superiorto
function in the class constructor.

Theinferiorto function places a class below other classes ipitheedence hierarchy. The calling syntax for
theinferiorto function is

inferiorto('classl’,'class?’,...)

You can specify multiple classes in the argumestt filacing the class below many other classdsein t
hierarchy

29. 11. 200

MATLAB 07 24/32
Similarly, thesuperiorto function places a class above other classes iprédeedence hierarchy. The calling
syntax for thesuperiorto function is

superiorto('classl','class?',...)
Location in the Hierarchy
If obj ect Ais aboveobj ect B in the precedence hierarchy, then the expression

obj ect A+ objectB

calls@l! assA/plus.m . Conversely, ibbj ect B is aboveobj ect A in the precedence hierarchy, then MATLAB
calls@l assB/plus.m

SeeHow MATLAB Determines Which Method to Cdlbr related information.

How MATLAB DeterminesWhich Method to Call

In MATLAB, functions exist in directories in the oguter's file system. A directory may contain many
functions (M-files). Function names are unique amithin a single directory (e.g., more than onediory
may contain a function callgie3). When you type a function name on the commarel MVATLAB must
search all the directories it is aware of to deteemwvhich function to call. This list of directosiés called the
MATLAB path.

When looking for a function, MATLAB searches theeditories in the order they are listed in the patig
calls the first function whose name matches theenafithe specified function.

If you write an M-file callechie3.m and put it in a directory that is searched befbespecgraph directory
that contains the MATLABie3 function, then MATLAB uses yourie3 function instead (note that this is |
true for built-in functions likeplot , which are always found first).

Object-oriented programming allows you to have mianeghods (MATLAB functions located in class

directories) with the same name and enables MATt&\Betermine which method to use based on thedype
class of the variables passed to the functioneikample, ifp is a portfolio object, then

pie3(p)
calls @portfolio/pie3.m because the argument is a portfolio object.
Selecting a M ethod

When you call a method for which there are multy®@esions with the same name, MATLAB determines the
method to call by:

e Looking at the classes of the objects in the argurig to determine which argument has the highest
object precedence; the class of this object canth@ method selection and is calleddtspatch type.

e Applying thefunction precedence order to determine which of possibly several implemeatet of a
method to call. This order is determined by thatmn and type of function.

Determining the Dispatch Type

MATLAB first determines which argument controls timethod selection. The class type of this argurtiesnt
determines the class in which MATLAB searches farinethod. The controlling argument is eit

29. 11. 200

MATLAB 07 25/32

o The argument with the highest precedence, or
¢ The leftmost of arguments having equal precedence

User-defined objects take precedence over the MAF bAlilt-in classes such @suble orchar . You can set
the relative precedence of user-defined objects thiginferiorto andsuperiorto functions, as described
Object Precedence

MATLAB searches for functions by name. When yod adlinction, MATLAB knows the name, number of
arguments, and the type of each argument. MATLA&suke dispatch type to choose among multiple
functions of the same name, but does not condigenamber of arguments.

Function Precedence Order

The function precedence order determines the pesoedof one function over another based on thedfpe
function and its location on the MATLAB path. Frahe perspective of method selection, MATLAB congain
two types of functions: those built into MATLAB, dithose written as M-files. MATLAB treats thesedgp
differently when determining the function precedzncder.

MATLAB selects the correct function for a given text by applying the following function precedemoées,
in the order given.

For built-in functions:
1. Overloaded Methods

If there is a method in the class directory ofdispatching argument that has the same name as a
MATLAB built-in function, then this method is catlanstead of the built-in function.

2. Nonoverloaded MATLAB Functions
If there is no overloaded method, then the MATLAWBI®In function is called.

MATLAB built-in functions take precedence over batlbfunctions and private functions. Therefore,
subfunctions or private functions with the same @a® MATLAB built-in functions can never be called.

For nonbuilt-in functions:
1. Subfunctions
Subfunctiondake precedence over all otherflié-functions and overloaded methods that areherpiatt
and have the same name. Even if the function lectalith an argument of type matching that of an
overloaded method, MATLAB uses the subfunction gmdres the overloaded method.
2. Private Functions
Private functionsre called if there is no subfunction of the savame within the current scope. As with

subfunctions, even if the function is called withargument of type matching that of an overloaded
method, MATLAB uses the private function and igreotiee overloaded method.

3. Class Constructor Functions

Constructor functions (functions having names #ratthe same as the @ directory, for example
@polynom/polynom.m) take precedence over other MATLAB functions. Hfere, if you create an M-
file calledpolynom.m and put it on your path before the constru@pplynom/polynom.m version,
MATLAB will always call the constructor versio

29. 11. 200

MATLAB 07 26/32

4. Overloaded Methods
MATLAB calls an overloaded method if it is not maskby a subfunction or private function.
5. Current Directory
A function in the current working directory is setied before one elsewhere on the path.
6. Elsewhere On Path
Finally, a function anywhere else on the path iscted.
Selecting M ethods from Multiple Directories
There may be a number of directories on the pathdbntain methods with the same name. MATLAB stops
searching when it finds the first implementatiortled method on the path, regardless of the impléstien
type (MEX-file, P-code, M-file).
Selecting Methods from Multiple Implementation Types

There are four file precedence types. MATLAB uskesgdrecedence to select between identically named
functions in the same directory. The order of pdecee for file types is:

MEX-files

MDL-file (Simulink model)
P-code

M-file

bR

For example, if MATLAB finds a P-code and an M-filersion of a method in a class directory, thenRthe
code version is used. It is, therefore, importanegenerate the P-code version whenever youlerMtfile.

Querying Which Method MATLAB Will Call
You can determine which method MATLAB will call ngj thewhich command. For example,

which pie3
your _mat | ab_pat h/toolbox/matlab/specgraph/pie3.m

However, ifp is a portfolio object,

which pie3(p)
di r _on_your _pat h/@portfolio/pie3.m % portfolio method

Thewhich command determines which versiorpeB MATLAB will call if you passed a portfolio objects
the input argument. To see a list of all versioha particular function that are on your MATLAB pause the
-all option. See thehich reference page for more information on this cominan

disp

Display text or arre

29. 11. 200

MATLAB 07 27132

Syntax
disp(X)

Description
disp(X) displays an array, without printing the array nath&.contains a text string, the string is displayed.

Another way to display an array on the screen tgpe its name, but this prints a leadig=," which is not
always desirable.

Note thatdisp does not display empty arrays.

Examples
One use oflisp in an M-file is to display a matrix with columrbels:

disp(’ Corn Oats Hay")
disp(rand(5,3))

which results in

Corn Oats Hay
0.2113 0.8474 0.2749
0.0820 0.4524 0.8807
0.7599 0.8075 0.6538
0.0087 0.4832 0.4899
0.8096 0.6135 0.7741

See Also

format , int2str |, num2str | rats , sprintf

subsref

Overloaded method fax(l) , A{l} andA field

Syntax
B = subsref(A,S)

Description

B = subsref(A,S) is called for the syntax(i) ,A{i} , orA.i whenAis an objects is a structure array with
the fields

e type : A string containing)' ,'{}' ,or. ,where() specifies integer subscript§, specifies ce
array subscripts, and specifies subscripted structure fields.
e subs: A cell array or string containing the actual strijgs.

Remarks

subsref is designed to be used by the MATLAB interpreten&ndle indexed references to objects. Calling

29. 11. 200

MATLAB 07 28/32
subsref directly as a function is not recommended. If gouusesubsref in this way, it conforms to the
formal MATLAB dispatching rules and can yield unexped results.

Examples

The syntaxA(1:2,:)) callssubsref(A,S) whereS is a 1-by-1 structure with.type='()’ andS.subs=
{1:2,2} . A colon used as a subscript is passed as timg stri .

The syntaxA{1:2} callssubsref(A,S) whereS.type="{} andS.subs={1:2}
The syntaxafield callssubsref(A,S) whereS.type="" andS.subs="field'
These simple calls are combined in a straightfodweaty for more complicated subscripting expressioms

such caseength(S) is the number of subscripting levels. For instan¢g2).name(3:5) callssubsref
(A;S) whereSis a 3-by-1 structure array with the following was:

S(1).type='() S(2).type="" S(3).type='()'
S(1).subs={1,2} S(2).subs="name’ S(3).subs={3:5}
See Also
subsasgn

SeeHandling Subscripted Referenfe more information about overloaded methods subdref .

subsasgn

Overloaded method fax()=B , A{l}=B , andA. field=B

Syntax

A = subsasgn(A,S,B)

Description

A = subsasgn(A,S,B) is called for the syntax(i)=B , A{i}=B , orA.i=B whenA is an objectS is a structure
array with the fields

e type : A string containing()' ,{}' ,or. ,where() specifiesinteger subscrip§, specifies ce
array subscripts, and specifies subscripted structure fields.

e subs: A cell array or string containing the actual strijgs.
Remarks
subsasgn is designed to be used by the MATLAB interpreteh&ndle indexed assignments to objects. Ce
subsasgn directly as a function is not recommended. If gouwsesubsasgn in this way, it conforms to the
formal MATLAB dispatching rules and can yield unexped results.

Examples

The syntaxA(1:2,)=B callsA=subsasgn(A,S,B) whereS is a 1-by-1 structure wit.type='()' and

29. 11. 200

MATLAB 07 29/32

S.subs ={1:2,"} . A colon used as a subscript is passed as timg 5stri .

The syntaxA{1:2}=B callsA=subsasgn(A,S,B) whereS.type='{}

The syntaA field=B callssubsasgn(A,S,B) whereS.type="" ands.subs="field'

These simple calls are combined in a straightfodweaty for more complicated subscripting expressioms

such caselngth(S) is the number of subscripting levels. For instaA¢g2).name(3:5)=B calls
A=subsasgn(A,S,B) whereS is a 3-by-1 structure array with the following wes:

S(1)-type='() S(2).type="" S(3).type='()'
S(1).subs={1,2} S(2).subs="name' S(3).subs={3:5}
See Also
subsref

SeeHandling Subscripted Assignmeior more information about overloaded methods subdasgn .

Terminatefor , while | switch | try |, andif statements or indicate last index
Syntax
while expression % (or if, for, or try)
Statements
end

B = A(index:end,index)
Description
end is used to terminatier , while , switch ,try , andif statements. Without a&md statementfor , while |
switch , try , andif wait for further input. Eachnd is paired with the closest previous unpaiied, while |
switch ,try , orif and serves to delimit its scope.
Theend command also serves as the last index in an ingexipression. In that conterbd = (size(x,k))
when used as part of théh index. Examples of this use a¢@:end) andX(1,1:2:end-1) . When usingnd
to grow an array, as i(end+1)=5 , make sureX exists first.
You can overload thend statement for a user object by definingeath method for the object. Thend methoc
should have the calling sequerepg(obj.k,n) , whereobj is the user objeck, is the index in the expression
where theend syntax is used, andis the total number of indices in the expresskmr.example, consider the
expression

A(end-1,:)
MATLAB will call the end method defined fok using the syntax

end(A,1,2)

Examples

29. 11. 200

MATLAB 07 30/32

This example showsnd used with théor andif statements.

fork=1:n
if a(k) ==
a(k) = a(k) + 2;
end
end

In this exampleend is used in an indexing expression.

A = magic(5)

A=
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

B = A(end,2:end)

B =

18 25 2 9

See Also

break , for ,if ,return , switch ,try , while

subsindex

Overloaded method fof(A)

Syntax

ind = subsindex(A)
Description
ind = subsindex(A) is called for the syntaX(A)’ whenA is an objectsubsindex must return the value of
the object as a zero-based integer indiest. (Must contain integer values in the range prod(size(X))-1)

subsindex is called by the defausubsref andsubsasgn functions, and you can call it if you overloaddbe
functions.

See Also

subsasgn , subsref

double

Convert to double precision

Syntax

29. 11. 200

MATLAB 07 31/32

double(X)

Description

double(x) returns the double-precision value fonf X is already a double-precision arréeyuble has no
effect.

Remarks

double is called for the expressionsfim , if , andwhile loops if the expression isn't already double-
precision.double should be overloaded for any object when it malegse to convert it to a double-precision
value.

char

Create character array (string)

Syntax

S = char(X)
S =char(C)
S = char(t1,t2,t3...)

Description

S=char(X) converts the array that contains positive integers representing chtaraodes into a MATLAL
character array (the first 127 codes are ASCIIe abtual characters displayed depend on the clharssitt
encoding for a given font. The result for any elatsefX outside the range from 0 to 65535 is not defined
(and can vary from platform to platform). Usmible to convert a character array into its numeric sode

S = char(C), whencCis a cell array of strings, places each elemengtiofo the rows of the character aray
Usecellstr to convert back.

S = char(t1,t2,t3,..) forms the character arr@containing the text stringsl,T2,T3,... as rows,

automatically padding each string with blanks torf@a valid matrix. Each text paramet@r, can itself be a
character array. This allows the creation of aabity large character arrays. Empty strings araiigant.

Remarks
Ordinarily, the elements @fare integers in the range 32:127, which are thggirie ASCII characters, or in

the range 0:255, which are all 8-bit values. Farineger values, or values outside the range 01285,
characters printed are determinedikiyem(A,256))

Examples

To print a 3-by-32 display of the printable ASChiacacters,

ascii = char(reshape(32:127,32,3)")
ascii =

1"#$%&'()*+,-./0123456789: <=>?
@ABCDEFGHIJKLMNOPQRSTUVWXY Z[\]"™
'abcdefghijklmnopqgrstuvwxy z{|}~

29. 11. 200

MATLAB 07 32/32

See Also

cellstr |, double |, get , set , strings |, strvcat |, text

29. 11. 200

