
MATLAB Classes and Objects 

This chapter describes how to define your own classes in MATLAB. Classes and objects enable you to add new 
data types and new operations to MATLAB. The class of a variable describes the structure of the variable and 
indicates the kinds of operations and functions that can apply to the variable. An object is an instance of a 
particular class. The phrase object-oriented programming describes an approach to writing programs that 
emphasizes the use of classes and objects.  
 

Classes and Objects: An Overview 

All MATLAB data types are implemented as object-oriented classes. You can add data types of your own to 
your MATLAB environment by creating additional classes. These user-defined classes define the structure of 
your new data type, and the M-file functions, or methods, that you write for each class define the behavior for 
that data type. 

These methods can also define the way various MATLAB operators, including arithmetic operations, subscript 
referencing, and concatenation, apply to the new data types. For example, a class called polynomial  might 
redefine the addition operator (+) so that it correctly performs the operation of addition on polynomials. 

With MATLAB classes you can 

� Create methods that override existing MATLAB functionality  

� Restrict the operations that are allowed on an object of a class  

� Enforce common behavior among related classes by inheriting from the same parent class  

� Significantly increase the reuse of your code  

Read more about MATLAB classes in Classes and Objects. 

You can view classes as new data types having specific behaviors defined for the class. For example, a 
polynomial class might redefine the addition operator (+) so that it correctly performs the operation of addition 
on polynomials. Operations defined to work with objects of a particular class are known as methods of that 
class. 

You can also view classes as new items that you can treat as single entities. An example is an arrow object that 
MATLAB can display on graphs (perhaps composed of MATLAB line and patch objects) and that has 
properties like a Handle Graphics object. You can create an arrow simply by instantiating the arrow class. 

You can add classes to your MATLAB environment by specifying a MATLAB structure that provides data 
storage for the object and creating a class directory containing M-files that operate on the object. These M-files 
contain the methods for the class. The class directory can also include functions that define the way various 
MATLAB operators, including arithmetic operations, subscript referencing, and concatenation, apply to the 
objects. Redefining how a built-in operator works for your class is known as overloading the operator. 

Features of Object-Oriented Programming 

When using well-designed classes, object-oriented programming can significantly increase code reuse and 
make your programs easier to maintain and extend. Programming with classes and objects differs from ordinary 
structured programming in these important ways: 

� Function and operator overloading. You can create methods that override existing MATLAB 
functions. When you call a function with a user-defined object as an argument, MATLAB first checks to 
see if there is a method defined for the object's class. If there is, MATLAB calls it, rather than the normal 

1/32MATLAB 07 

29. 11. 2007



MATLAB function.  

� Encapsulation of data and methods. Object properties are not visible from the command line; you can 
access them only with class methods. This protects the object properties from operations that are not 
intended for the object's class.  

� Inheritance. You can create class hierarchies of parent and child classes in which the child class inherits 
data fields and methods from the parent. A child class can inherit from one parent (single inheritance) or 
many parents (multiple inheritance). Inheritance can span one or more generations. Inheritance enables 
sharing common parent functions and enforcing common behavior amongst all child classes.  

� Aggregation. You can create classes using aggregation, in which an object contains other objects. This 
is appropriate when an object type is part of another object type. For example, a savings account object 
might be a part of a financial portfolio object. 

MATLAB Data Class Hierarchy 

All MATLAB data types are designed to function as classes in object-oriented programming. The diagram 
below shows the fifteen fundamental data types (or classes) defined in MATLAB. You can add new data types 
to MATLAB by extending the class hierarchy.  
 

 

The diagram shows a user class that inherits from the structure class. All classes that you create are structure 
based since this is the point in the class hierarchy where you can insert your own classes. (For more information 
about MATLAB data types, see the section on "Data Types.") 

Creating Objects 

You create an object by calling the class constructor and passing it the appropriate input arguments. In 
MATLAB, constructors have the same name as the class name. For example, the statement, 

p = polynom([1 0 -2 -5]); 

creates an object named p belonging to the class polynom . Once you have created a polynom object, you can 
operate on the object using methods that are defined for the polynom  class. See Example -- A Polynomial Class 
for a description of the polynom  class. 

Invoking Methods on Objects 

Class methods are M-file functions that take an object as one of the input arguments. The methods for a specific 
class must be placed in the class directory for that class (the @class_name directory). This is the first place that 

2/32MATLAB 07 

29. 11. 2007



MATLAB looks to find a class method. 

The syntax for invoking a method on an object is similar to a function call. Generally, it looks like 

[out1,out2,...] = method_name(object,arg1,arg2, ...); 

For example, suppose a user-defined class called polynom  has a char  method defined for the class. This 
method converts a polynom object to a character string and returns the string. This statement calls the char  
method on the polynom object p. 

s = char(p); 

Using the class  function, you can confirm that the returned value s  is a character string. 

class(s)ans = 
     char 
s 
s = 
     x^3-2*x-5 

You can use the methods  command to produce a list of all of the methods that are defined for a class. 

Private Methods 

Private methods can be called only by other methods of their class. You define private methods by placing the 
associated M-files in a private  subdirectory of the @class_name directory. In the example,  

@class_name/private/update_obj.m 

the method update_obj  has scope only within the class_name class. This means that update_obj  can be 
called by any method that is defined in the @class_name directory, but it cannot be called from the MATLAB 
command line or by methods outside of the class directory, including parent methods. 

Private methods and private functions differ in that private methods (in fact all methods) have an object as one 
of their input arguments and private functions do not. You can use private functions as helper functions, such as 
described in the next section. 

Helper Functions 

In designing a class, you may discover the need for functions that perform support tasks for the class, but do not 
directly operate on an object. These functions are called helper functions. A helper function can be a 
subfunction in a class method file or a private function. When determining which version of a particular 
function to call, MATLAB looks for these functions in the order listed above. For more information about the 
order in which MATLAB calls functions and methods, see How MATLAB Determines Which Method to Call. 

Debugging Class Methods 

You can use the MATLAB debugging commands with object methods in the same way that you use them with 
other M-files. The only difference is that you need to include the class directory name before the method name 
in the command call, as shown in this example using dbstop . 

dbstop @polynom/char 

While debugging a class method, you have access to all methods defined for the class, including inherited 
methods, private methods, and private functions. 

3/32MATLAB 07 

29. 11. 2007



Changing Class Definition 

If you change the class definition, such as the number or names of fields in a class, you must issue a 

clear classes  

command to propagate the changes to your MATLAB session. This command also clears all objects from the 
workspace. See the clear  command help entry for more information. 

Setting Up Class Directories 

The M-files defining the methods for a class are collected together in a directory referred to as the class 
directory. The directory name is formed with the class name preceded by the character @. For example, one of 
the examples used in this chapter is a class involving polynomials in a single variable. The name of the class, 
and the name of the class constructor, is polynom . The M-files defining a polynomial class would be located in 
directory with the name @polynom. 

The class directories are subdirectories of directories on the MATLAB search path, but are not themselves on 
the path. For instance, t he new @polynom directory could be a subdirectory of the MATLAB working directory 
or your own personal directory that has been added to the search path. 

Adding the Class Directory to the MATLAB Path 

After creating the class directory, you need to update the MATLAB path so that MATLAB can locate the class 
source files. The class directory should not be directly on the MATLAB path. Instead, you should add the 
parent directory to the MATLAB path. For example, if the @polynom class directory is located at 

c:\my_classes\@polynom 

you add the class directory to the MATLAB path with the addpath  command 

addpath c:\my_classes; 

If you create a class directory with the same name as another class, MATLAB treats the two class directories as 
a single directory when locating class methods. For more information, see How MATLAB Determines Which 
Method to Call. 

Data Structure 

One of the first steps in the design of a new class is the choice of the data structure to be used by the class. 
Objects are stored in MATLAB structures. The fields of the structure, and the details of operations on the 
fields, are visible only within the methods for the class. The design of the appropriate data structure can affect 
the performance of the code. 

Tips for C++ and Java Programmers 

If you are accustomed to programming in other object-oriented languages, such as C++ or Java, you will find 
that the MATLAB programming language differs from these languages in some important ways: 

� In MATLAB, method dispatching is not syntax based, as it is in C++ and Java. When the argument list 
contains objects of equal precedence, MATLAB uses the left-most object to select the method to call.  

� In MATLAB, there is no equivalent to a destructor method. To remove an object from the workspace, 
use the clear  function.  

� Construction of MATLAB data types occurs at runtime rather than compile time. You register an object 

4/32MATLAB 07 

29. 11. 2007



as belonging to a class by calling the class  function.  

� When using inheritance in MATLAB, the inheritance relationship is established in the child class by 
creating the parent object, and then calling the class  function. For more information on writing 
constructors for inheritance relationships, see Building on Other Classes.  

� When using inheritance in MATLAB, the child object contains a parent object in a property with the 
name of the parent class.  

� In MATLAB, there is no passing of variables by reference. When writing methods that update an object, 
you must pass back the updated object and use an assignment statement. For instance, this call to the set  
method updates the name field of the object A and returns the updated object. 

A = set(A,'name','John Smith'); 

� In MATLAB, there is no equivalent to an abstract class.  

� In MATLAB, there is no equivalent to the C++ scoping operator.  

� In MATLAB, there is no virtual inheritance or virtual base classes.  

� In MATLAB, there is no equivalent to C++ templates. 

Designing User Classes in MATLAB 

This section discusses how to approach the design of a class and describes the basic set of methods that should 
be included in a class. 

The MATLAB Canonical Class 

When you design a MATLAB class, you should include a standard set of methods that enable the class to 
behave in a consistent and logical way within the MATLAB environment. Depending on the nature of the class 
you are defining, you may not need to include all of these methods and you may include a number of other 
methods to realize the class's design goals.  

This table lists the basic methods included in MATLAB classes. 
 

The following sections discuss the implementation of each type of method, as well as providing references to 
examples used in this chapter.  

The Class Constructor Method 

The @ directory for a particular class must contain an M-file known as the constructor for that class. The name 
of the constructor is the same as the name of the directory (excluding the @ prefix and .m extension) that 

Class Method Description 

class constructor Creates an object of the class 

display  Called whenever MATLAB displays the contents of an object (e.g., when an 
expression is entered without terminating with a semicolon) 

set  and get  Accesses class properties 

subsref  and subsasgn  Enables indexed reference and assignment for user objects 

end   Supports end  syntax in indexing expressions using an object; e.g., A(1:end)  

subsindex  Supports using an object in indexing expressions 

converters like double  
and char  

Methods that convert an object to a MATLAB data type 

5/32MATLAB 07 

29. 11. 2007



defines the name of the class. The constructor creates the object by initializing the data structure and 
instantiating an object of the class. 

Guidelines for Writing a Constructor 

Class constructors must perform certain functions so that objects behave correctly in the MATLAB 
environment. In general, a class constructor must handle three possible combinations of input arguments: 

� No input arguments  

� An object of the same class as an input argument  

� The input arguments used to create an object of the class (typically data of some kind) 

No Input Arguments.   If there are no input arguments, the constructor should create a default object. Since 
there are no inputs, you have no data from which to create the object, so you simply initialize the object's data 
structures with empty or default values, call the class  function to instantiate the object, and return the object as 
the output argument. Support for this syntax is required for two reasons: 

� When loading objects into the workspace, the load  function calls the class constructor with no 
arguments.  

� When creating arrays of objects, MATLAB calls the class constructor to add objects to the array. 

Object Input Argument.   If the first input argument in the argument list is an object of the same class, the 
constructor should simply return the object. Use the isa  function to determine if an argument is a member of a 
class. See Overloading the + Operator for an example of a method that uses this constructor syntax. 

Data Input Arguments.   If the input arguments exist and are not objects of the same class, then the 
constructor creates the object using the input data. Of course, as in any function, you should perform proper 
argument checking in your constructor function. A typical approach is to use a varargin  input argument and a 
switch  statement to control program flow. This provides an easy way to accommodate the three cases: no 
inputs, object input, or the data inputs used to create an object.  

It is in this part of the constructor that you assign values to the object's data structure, call the class  function to 
instantiate the object, and return the object as the output argument. If necessary, place the object in an object 
hierarchy using the superiorto  and inferiorto  functions.  

Using the class Function in Constructors 

Within a constructor method, you use the class  function to associate an object structure with a particular class. 
This is done using an internal class tag that is only accessible using the class  and isa  functions. For example, 
this call to the class  function identifies the object p to be of type polynom . 

p = class(p,'polynom'); 

Examples of Constructor Methods 

See the following sections for examples of constructor methods: 

� The Polynom Constructor Method  

� The Asset Constructor Method  

� The Stock Constructor Method  

� The Portfolio Constructor Method  

Identifying Objects Outside the Class Directory 

6/32MATLAB 07 

29. 11. 2007



The class  and isa  functions used in constructor methods can also be used outside of the class directory. The 
expression 

isa(a,'class_name'); 

checks whether a is an object of the specified class. For example, if p is a polynom object, each of the 
following expressions is true. 

isa(pi,'double'); 
isa('hello','char'); 
isa(p,'polynom'); 

Outside of the class directory, the class  function takes only one argument (it is only within the constructor that 
class  can have more than one argument). 

The expression 

class(a) 

returns a string containing the class name of a. For example, 

class(pi),  
class('hello'),  
class(p) 

return 

'double',  
'char',  
'polynom' 

Use the whos function to see what objects are in the MATLAB workspace.  

whos 
  Name      Size         Bytes  Class 
  p         1x1          156 polynom object 

The display Method 

MATLAB calls a method named display  whenever an object is the result of a statement that is not terminated 
by a semicolon. For example, creating the variable a, which is a double, calls the MATLAB display  method 
for doubles. 

a = 5 
a = 
    5 

You should define a display  method so MATLAB can display values on the command line when referencing 
objects from your class. In many classes, display  can simply print the variable name, and then use the char  
converter method to print the contents or value of the variable, since MATLAB displays output as strings. You 
must define the char  method to convert the object's data to a character string. 

Examples of display Methods 

See the following sections for examples of display  methods: 

7/32MATLAB 07 

29. 11. 2007



� The Polynom display Method  

� The Asset display Method  

� The Stock display Method  

� The Portfolio display Method  

Accessing Object Data 

You need to write methods for your class that provide access to an object's data. Accessor methods can use a 
variety of approaches, but all methods that change object data always accept an object as an input argument and 
return a new object with the data changed. This is necessary because MATLAB does not support passing 
arguments by reference (i.e., pointers). Functions can change only their private, temporary copy of an object. 
Therefore, to change an existing object, you must create a new one, and then replace the old one.  

The following sections provide more detail about implementation techniques for the set , get , subsasgn , and 
subsref  methods. 

The set and get Methods 

The set  and get  methods provide a convenient way to access object data in certain cases. For example, 
suppose you have created a class that defines an arrow object that MATLAB can display on graphs (perhaps 
composed of existing MATLAB line and patch objects).  

To produce a consistent interface, you could define set  and get  methods that operate on arrow objects the way 
the MATLAB set  and get  functions operate on built-in graphics objects. The set  and get  verbs convey what 
operations they perform, but insulate the user from the internals of the object.  

Examples of set and get Methods 

See the following sections for examples of set  and get  methods: 

� The Asset get Method and The Asset set Method  

� The Stock get Method and The Stock set Method 

Property Name Methods 

As an alternative to a general set  method, you can write a method to handle the assignment of an individual 
property. The method should have the same name as the property name.  

For example, if you defined a class that creates objects representing employee data, you might have a field in an 
employee object called salary . You could then define a method called salary.m  that takes an employee object 
and a value as input arguments and returns the object with the specified value set.  

Indexed Reference Using subsref and subsasgn 

User classes implement new data types in MATLAB. It is useful to be able to access object data via an indexed 
reference, as is possible with the MATLAB built-in data types. For example, if A is an array of class double , A
(i)  returns the i th element of A. 

As the class designer, you can decide what an index reference to an object means. For example, suppose you 
define a class that creates polynomial objects and these objects contain the coefficients of the polynomial. 

An indexed reference to a polynomial object,  

8/32MATLAB 07 

29. 11. 2007



p(3) 

could return the value of the coefficient of x3, the value of the polynomial at 

 

x = 3, or something different depending on the intended design.  

You define the behavior of indexing for a particular class by creating two class methods - subsref  and 
subsasgn . MATLAB calls these methods whenever a subscripted reference or assignment is made on an object 
from the class. If you do not define these methods for a class, indexing is undefined for objects of this class. 

In general, the rules for indexing objects are the same as the rules for indexing structure arrays. For details, see 
Structures. 

Handling Subscripted Reference 

The use of a subscript or field designator with an object on the right-hand side of an assignment statement is 
known as a subscripted reference. MATLAB calls a method named subsref  in these situations. 

Object subscripted references can be of three forms - an array index, a cell array index, and a structure field 
name: 

A(I) 
A{I} 
A.field 

Each of these results in a call by MATLAB to the subsref  method in the class directory. MATLAB passes two 
arguments to subsref . 

B = subsref(A,S) 

The first argument is the object being referenced. The second argument, S, is a structure array with two fields: 

� S.type  is a string containing '()' , '{}' , or '.'  specifying the subscript type. The parentheses represent 
a numeric array; the curly braces, a cell array; and the dot, a structure array.  

� S.subs  is a cell array or string containing the actual subscripts. A colon used as a subscript is passed as 
the string ':' . 

For instance, the expression 

A(1:2,:) 

causes MATLAB to call subsref(A,S) , where S is a 1-by-1 structure with 

S.type = '()' 
S.subs = {1:2,':'} 

Similarly, the expression 

A{1:2} 

uses 

S.type ='{}' 
S.subs = {1:2} 

9/32MATLAB 07 

29. 11. 2007



The expression 

A.field 

calls subsref(A,S)  where 

S.type = '.' 
S.subs = 'field' 

These simple calls are combined for more complicated subscripting expressions. In such cases, length(S)  is 
the number of subscripting levels. For example, 

A(1,2).name(3:4) 

calls subsref(A,S),  where S is a 3-by-1 structure array with the values: 

S(1).type = '()'    S(2).type = '.'      S(3).type = '()' 
S(1).subs = '{1,2}' S(2).subs = 'name'   S(3).subs = '{3:4}' 

How to Write subsref 

The subsref  method must interpret the subscripting expressions passed in by MATLAB. A typical approach is 
to use the switch  statement to determine the type of indexing used and to obtain the actual indices. The 
following three code fragments illustrate how to interpret the input arguments. In each case, the function must 
return the value B. 

For an array index: 

switch S.type 
case '()' 
    B = A(S.subs{:}); 
end 

For a cell array: 

switch S.type 
case '{}' 
    B = A(S.subs{:}); % A is a cell array 
end 

For a structure array: 

switch S.type 
case '.' 
    switch S.subs 
    case ' field1' 
        B = A. field1; 
    case ' field2' 
        B = A. field2; 
    end 
end 

Examples of the subsref Method 

See the following sections for examples of the subsref  method: 

� The Polynom subsref Method  

10/32MATLAB 07 

29. 11. 2007



� The Asset subsref Method  

� The Stock subsref Method  

� The Portfolio subsref Method 

Handling Subscripted Assignment 

The use of a subscript or field designator with an object on the left-hand side of an assignment statement is 
known as a subscripted assignment. MATLAB calls a method named subsasgn  in these situations. Object 
subscripted assignment can be of three forms - an array index, a cell array index, and a structure field name. 

A(I) = B 
A{I} = B 
A.field = B 

Each of these results in a call to subsasgn  of the form 

A = subsasgn(A,S,B) 

The first argument, A, is the object being referenced. The second argument, S, has the same fields as those used 
with subsref . The third argument, B, is the new value. 

Examples of the subsasgn Method 

See the following sections for examples of the subsasgn  method: 

� The Asset subsasgn Method  

� The Stock subsasgn Method 

Object Indexing Within Methods 

If a subscripted reference is made within a class method, MATLAB uses its built-in subsref  function to access 
data within the method's own class. If the method accesses data from another class, MATLAB calls the 
overloaded subsref  function in that class. The same holds true for subscripted assignment and subsasgn . 

The following example shows a method, testref , that is defined in the class, employee . This method makes a 
reference to a field, address , in an object of its own class. For this, MATLAB uses the built-in subsref  
function. It also references the same field in another class, this time using the overloaded subsref  of that class. 

% ---- EMPLOYEE class method: testref.m ---- 
function testref(myclass,otherclass) 
 
myclass.address                 % use built-in subs ref 
otherclass.address              % use overloaded su bsref 

The example creates an employee  object and a company  object. 

empl = employee('Johnson','Chicago'); 
comp = company('The MathWorks','Natick'); 

The employee  class method, testref , is called. MATLAB uses an overloaded subsref  only to access data 
outside of the method's own class. 

testref(empl,comp) 
ans =                            % built-in subsref  was called 
   Chicago 

11/32MATLAB 07 

29. 11. 2007



 
ans =                            % @company\subsref  was calledExecuting @company\subsref ...
   Natick 

Defining end Indexing for an Object 

When you use end  in an object indexing expression, MATLAB calls the object's end  class method. If you want 
to be able to use end  in indexing expressions involving objects of your class, you must define an end  method 
for your class. 

The end  method has the calling sequence 

end(a,k,n) 

where a is the user object, k  is the index in the expression where the end  syntax is used, and n is the total 
number of indices in the expression.  

For example, consider the expression  

A(end-1,:) 

MATLAB calls the end  method defined for the object A using the arguments 

end(A,1,2) 

That is, the end  statement occurs in the first index element and there are two index elements. The class method 
for end  must then return the index value for the last element of the first dimension. When you implement the 
end  method for your class, you must ensure it returns a value appropriate for the object. 

Indexing an Object with Another Object 

When MATLAB encounters an object as an index, it calls the subsindex  method defined for the object. For 
example, suppose you have an object a and you want to use this object to index into another object b. 

c = b(a); 

A subsindex  method might do something as simple as convert the object to double format to be used as an 
index, as shown in this sample code. 

function d = subsindex(a) 
%SUBSINDEX 
% convert the object a to double format to be used 
% as an index in an indexing expression 
d = double(a); 

subsindex  values are 0-based, not 1-based. 

Converter Methods 

A converter method is a class method that has the same name as another class, such as char  or double . 
Converter methods accept an object of one class as input and return an object of another class. Converters 
enable you to: 

� Use methods defined for another class  

� Ensure that expressions involving objects of mixed class types execute properly 

12/32MATLAB 07 

29. 11. 2007



A converter function call is of the form 

b = class_name(a) 

where a is an object of a class other than class_name. In this case, MATLAB looks for a method called 
class_name in the class directory for object a. If the input object is already of type class_name, then 
MATLAB calls the constructor, which just returns the input argument. 

Examples of Converter Methods 

See the following sections for examples of converter methods: 

� The Polynom to Double Converter  

� The Polynom to Char Converter 

Overloading Operators and Functions 

In many cases, you may want to change the behavior of the MATLAB operators and functions for cases when 
the arguments are objects. You can accomplish this by overloading the relevant functions. Overloading enables 
a function to handle different types and numbers of input arguments and perform whatever operation is 
appropriate for the highest-precedence object. See Object Precedence for more information on object 
precedence. 

Overloading Operators 

Each built-in MATLAB operator has an associated function name (e.g., the + operator has an associated 
plus.m  function). You can overload any operator by creating an M-file with the appropriate name in the class 
directory. For example, if either p or q is an object of type class_name, the expression 

p + q 

generates a call to a function @class_name/plus.m , if it exists. If p and q are both objects of different classes, 
then MATLAB applies the rules of precedence to determine which method to use.  

Examples of Overloaded Operators 

See the following sections for examples of overloaded operators: 

� Overloading the + Operator  

� Overloading the - Operator  

� Overloading the * Operator 

The following table lists the function names for most of the MATLAB operators. 
 

Operation M-File Description 

a + b  plus(a,b)  Binary addition 

a - b  minus(a,b)  Binary subtraction 

-a  uminus(a)  Unary minus 

+a uplus(a)  Unary plus 

a.*b  times(a,b)  Element-wise multiplication 

13/32MATLAB 07 

29. 11. 2007



Overloading Functions 

You can overload any function by creating a function of the same name in the class directory. When a function 
is invoked on an object, MATLAB always looks in the class directory before any other location on the search 
path. To overload the plot  function for a class of objects, for example, simply place your version of plot.m  in 
the appropriate class directory. 

Examples of Overloaded Functions 

See the following sections for examples of overloaded functions: 

� Overloading Functions for the Polynom Class  

� The Portfolio pie3 Method 

a*b  mtimes(a,b)  Matrix multiplication 

a./b  rdivide(a,b)  Right element-wise division 

a.\b  ldivide(a,b)  Left element-wise division 

a/b  mrdivide(a,b)  Matrix right division 

a\b  mldivide(a,b)  Matrix left division 

a.^b  power(a,b)  Element-wise power 

a^b  mpower(a,b)  Matrix power 

a < b  lt(a,b)  Less than 

a > b  gt(a,b)  Greater than 

a <= b  le(a,b)  Less than or equal to 

a >= b  ge(a,b)  Greater than or equal to 

a ~= b  ne(a,b)  Not equal to 

a == b  eq(a,b)  Equality 

a & b  and(a,b)  Logical AND 

a | b  or(a,b)  Logical OR 

~a not(a)  Logical NOT 

a:d:b  
a:b  

colon (a,d,b)  
colon(a,b)  

Colon operator 

a'  ctranspose(a)  Complex conjugate transpose 

a.'  transpose(a)  Matrix transpose 

command window output  display(a)  Display method 

[a b]  horz cat (a,b,...)  Horizontal concatenation 

[a; b]  vertcat(a,b,...)  Vertical concatenation 

a(s1,s2,...sn)  subsref (a,s)  Subscripted reference 

a(s1,...,sn) = b  subsasgn (a,s,b)  Subscripted assignment 

b(a)  subsindex (a)  Subscript index 

14/32MATLAB 07 

29. 11. 2007



Example -- A Polynomial Class 

This example implements a MATLAB data type for polynomials by defining a new class called polynom. The 
class definition specifies a structure for data storage and defines a directory (@polynom) of methods that operate 
on polynom objects.  

Polynom Data Structure 

The polynom class represents a polynomial with a row vector containing the coefficients of powers of the 
variable, in decreasing order. Therefore, a polynom object p is a structure with a single field, p.c , containing 
the coefficients. This field is accessible only within the methods in the @polynom directory. 

Polynom Methods 

To create a class that is well behaved within the MATLAB environment and provides useful functionality for a 
polynomial data type, the polynom class implements the following methods: 

� A constructor method polynom.m   

� A polynom to double converter  

� A polynom to char converter  

� A display  method  

� A subsref  method  

� Overloaded +, -, and *  operators  

� Overloaded roots , polyval , plot , and diff  functions 

The Polynom Constructor Method 

Here is the polynom class constructor, @polynom/polynom.m . 

function p = polynom(a) 
%POLYNOM Polynomial class constructor. 
%   p = POLYNOM(v) creates a polynomial object from  the vector v, 
%   containing the coefficients of descending power s of x. 
if nargin == 0 
   p.c = []; 
   p = class(p,'polynom'); 
elseif isa(a,'polynom') 
   p = a; 
else 
   p.c = a(:).'; 
   p = class(p,'polynom'); 
end 

Constructor Calling Syntax 

You can call the polynom constructor method with one of three different arguments: 

� No Input Argument - If you call the constructor function with no arguments, it returns a polynom object 
with empty fields.  

� Input Argument is an Object - If you call the constructor function with an input argument that is already a 
polynom object, MATLAB returns the input argument. The isa  function (pronounced "is a") checks for 
this situation.  

� Input Argument is a coefficient vector - If the input argument is a variable that is not a polynom object, 
reshape it to be a row vector and assign it to the .c  field of the object's structure. The class  function 

15/32MATLAB 07 

29. 11. 2007



creates the polynom  object, which is then returned by the constructor. 

An example use of the polynom  constructor is the statement 

p = polynom([1 0 -2 -5]) 

This creates a polynomial with the specified coefficients. 

Converter Methods for the Polynom Class 

A converter method converts an object of one class to an object of another class. Two of the most important 
converter methods contained in MATLAB classes are double  and char . Conversion to double  produces the 
MATLAB traditional matrix, although this may not be appropriate for some classes. Conversion to char  is 
useful for producing printed output. 

The Polynom to Double Converter  

The double converter method for the polynom class is a very simple M-file, @polynom/double.m , which 
merely retrieves the coefficient vector. 

function c = double(p) 
% POLYNOM/DOUBLE  Convert polynom object to coeffic ient vector. 
%   c = DOUBLE(p) converts a polynomial object to t he vector c 
%   containing the coefficients of descending power s of x. 
c = p.c; 

On the object p, 

p = polynom([1 0 -2 -5]) 

the statement 

double(p) 

returns 

ans = 
    1     0    -2    -5 

The Polynom to Char Converter  

The converter to char is a key method because it produces a character string involving the powers of an 
independent variable, x . Therefore, once you have specified x , the string returned is a syntactically correct 
MATLAB expression, which you can then evaluate.  

Here is @polynom/char.m .  

function s = char(p) 
% POLYNOM/CHAR    
% CHAR(p) is the string representation of p.c 
if all(p.c == 0) 
    s = '0'; 
else 
    d = length(p.c) - 1; 
    s = []; 
    for a = p.c; 
        if a ~= 0; 

16/32MATLAB 07 

29. 11. 2007



            if ~isempty(s) 
                 if a > 0 
                     s = [s ' + ']; 
                 else 
                     s = [s ' - ']; 
                     a = -a; 
                 end 
            end 
            if a ~= 1 | d == 0 
                 s = [s num2str(a)]; 
                 if d > 0 
                     s = [s '*']; 
                 end 
            end 
            if d >= 2 
                 s = [s 'x^' int2str(d)]; 
            elseif d == 1 
                 s = [s 'x']; 
            end 
        end 
        d = d - 1; 
    end 
end 

Evaluating the Output 

If you create the polynom object p 

p = polynom([1 0 -2 -5]); 

and then call the char  method on p 

char(p) 

MATLAB produces the result 

ans = 
    x^3 - 2*x - 5 

The value returned by char  is a string that you can pass to eval  once you have defined a scalar value for x . For 
example,  

x = 3; 
 
eval(char(p)) 
ans = 
     16 

See The Polynom subsref Method for a better method to evaluate the polynomial. 

The Polynom display Method 

Here is @polynom/display.m . This method relies on the char  method to produce a string representation of the 
polynomial, which is then displayed on the screen. This method produces output that is the same as standard 
MATLAB output. That is, the variable name is displayed followed by an equal sign, then a blank line, then a 
new line with the value.  

function display(p) 
% POLYNOM/DISPLAY Command window display of a polyn om 
disp(' '); 

17/32MATLAB 07 

29. 11. 2007



disp([inputname(1),' = ']) 
disp(' '); 
disp(['   ' char(p)]) 
disp(' '); 

The statement 

p = polynom([1 0 -2 -5]) 

creates a polynom object. Since the statement is not terminated with a semicolon, the resulting output is 

p = 
    x^3 - 2*x - 5 

The Polynom subsref Method 

Suppose the design of the polynom class specifies that a subscripted reference to a polynom  object causes the 
polynomial to be evaluated with the value of the independent variable equal to the subscript. That is, for a 
polynom object p,  

p = polynom([1 0 -2 -5]); 

the following subscripted expression returns the value of the polynomial at  
x = 3  and x = 4 . 

p([3 4]) 
ans = 
    16   51 

subsref Implementation Details 

This implementation takes advantage of the char  method already defined in the polynom class to produce an 
expression that can then be evaluated.  

function b = subsref(a,s) 
% SUBSREF 
switch s.type 
case '()' 
    ind = s.subs{:}; 
    for k = 1:length(ind) 
        b(k) = eval(strrep(char(a),'x',num2str(ind( k)))); 
    end 
otherwise 
   error('Specify value for x as p(x)') 
end 

Once the polynomial expression has been generated by the char  method, the strrep  function is used to swap 
the passed in value for the character x . The eval  function then evaluates the expression and returns the value in 
the output argument. 

Overloading Arithmetic Operators for polynom 

Several arithmetic operations are meaningful on polynomials and should be implemented for the polynom class. 
When overloading arithmetic operators, keep in mind what data types you want to operate on. In this section, 
the plus , minus , and mtimes  methods are defined for the polynom class to handle addition, subtraction, and 
multiplication on polynom/polynom and polynom/double combinations of operands. 

18/32MATLAB 07 

29. 11. 2007



Overloading the + Operator 

If either p or q is a polynom, the expression 

p + q 

generates a call to a function @polynom/plus.m , if it exists (unless p or q is an object of a higher precedence, as 
described in Object Precedence).  

The following M-file redefines the + operator for the polynom class. 

function r = plus(p,q) 
% POLYNOM/PLUS  Implement p + q for polynoms. 
p = polynom(p); 
q = polynom(q); 
k = length(q.c) - length(p.c); 
r = polynom([zeros(1,k) p.c] + [zeros(1,-k) q.c]); 

The function first makes sure that both input arguments are polynomials. This ensures that expressions such as 

p + 1 

that involve both a polynom and a double, work correctly. The function then accesses the two coefficient 
vectors and, if necessary, pads one of them with zeros to make them the same length. The actual addition is 
simply the vector sum of the two coefficient vectors. Finally, the function calls the polynom  constructor a third 
time to create the properly typed result. 

Overloading the - Operator 

You can implement the overloaded minus operator (-) using the same approach as the plus (+) operator. 
MATLAB calls @polynom/minus.m  to compute p-q. 

function r = minus(p,q) 
% POLYNOM/MINUS Implement p - q for polynoms. 
p = polynom(p); 
q = polynom(q); 
k = length(q.c) - length(p.c); 
r = polynom([zeros(1,k) p.c] - [zeros(1,-k) q.c]); 

Overloading the * Operator 

MATLAB calls the method @polynom/mtimes.m  to compute the product p*q . The letter m at the beginning of 
the function name comes from the fact that it is overloading the MATLAB matrix multiplication. Multiplication 
of two polynomials is simply the convolution of their coefficient vectors. 

function r = mtimes(p,q) 
% POLYNOM/MTIMES   Implement p * q for polynoms. 
p = polynom(p); 
q = polynom(q); 
r = polynom(conv(p.c,q.c)); 

Using the Overloaded Operators 

Given the polynom object 

p = polynom([1 0 -2 -5]) 

19/32MATLAB 07 

29. 11. 2007



MATLAB calls these two functions @polynom/plus.m  and @polynom/mtimes.m  when you issue the 
statements 

q = p+1 
r = p*q 

to produce 

q = 
     x^3 - 2*x - 4 
 
r = 
    x^6 - 4*x^4 - 9*x^3 + 4*x^2 + 18*x + 20 

Overloading Functions for the Polynom Class 

MATLAB already has several functions for working with polynomials represented by coefficient vectors. They 
should be overloaded to also work with the new polynom object. In many cases, the overloading methods can 
simply apply the original function to the coefficient field.  

Overloading roots for the Polynom Class 

The method @polynom/roots.m  finds the roots of polynom objects. 

function r = roots(p) 
% POLYNOM/ROOTS.  ROOTS(p) is a vector containing t he roots of p. 
r = roots(p.c); 

The statement 

roots(p) 

results in 

ans = 
    2.0946 
    -1.0473 + 1.1359i 
    -1.0473 - 1.1359i 

Overloading polyval for the Polynom Class 

The function polyval  evaluates a polynomial at a given set of points. @polynom/polyval.m  uses nested 
multiplication, or Horner's method to reduce the number of multiplication operations used to compute the 
various powers of x. 

function y = polyval(p,x) 
% POLYNOM/POLYVAL  POLYVAL(p,x) evaluates p at the points x. 
y = 0; 
for a = p.c 
   y = y.*x + a; 
end 

Overloading plot for the Polynom Class 

The overloaded plot  function uses both root  and polyval . The function selects the domain of the independent 
variable to be slightly larger than an interval containing all real roots. Then polyval  is used to evaluate the 
polynomial at a few hundred points in the domain.  

20/32MATLAB 07 

29. 11. 2007



function plot(p) 
% POLYNOM/PLOT  PLOT(p) plots the polynom p. 
r = max(abs(roots(p))); 
x = (-1.1:0.01:1.1)*r; 
y = polyval(p,x); 
plot(x,y); 
title(char(p)) 
grid on 

Overloading diff for the Polynom Class 

The method @polynom/diff.m  differentiates a polynomial by reducing the degree by 1 and multiplying each 
coefficient by its original degree.  

function q = diff(p) 
% POLYNOM/DIFF  DIFF(p) is the derivative of the po lynom p. 
c = p.c; 
d = length(c) - 1;  % degree 
q = polynom(p.c(1:d).*(d:-1:1)); 

Listing Class Methods 

The function call 

methods('class_name') 

or its command form 

methods class_name 

shows all the methods available for a particular class. For the polynom  example, the output is 

methods polynom 
Methods for class polynom: 

 

 

  

Plotting the two polynom objects x  and p calls most of these methods. 

x = polynom([1 0]); 
p = polynom([1 0 -2 -5]); 
plot(diff(p*p + 10*p + 20*x) - 20) 

 
 

char  display  minus  plot  polynom  roots  

diff  double  mtimes  plus  polyval  subsref  

21/32MATLAB 07 

29. 11. 2007



  

Building on Other Classes 

A MATLAB object can inherit properties and behavior from another MATLAB object. When one object (the 
child) inherits from another (the parent), the child object includes all the fields of the parent object and can call 
the parent's methods. The parent methods can access those fields that a child object inherited from the parent 
class, but not fields new to the child class. 

Inheritance is a key feature of object-oriented programming. It makes it easy to reuse code by allowing child 
objects to take advantage of code that exists for parent objects. Inheritance enables a child object to behave 
exactly like a parent object, which facilitates the development of related classes that behave similarly, but are 
implemented differently. 

There are two kinds of inheritance: 

� Simple inheritance, in which a child object inherits characteristics from one parent class.  

� Multiple inheritance, in which a child object inherits characteristics from more than one parent class. 

This section also discusses a related topic, aggregation. Aggregation allows one object to contain another object 
as one of its fields. 

Saving and Loading Objects 

You can use the MATLAB save  and load  commands to save and retrieve user-defined objects to and 
from .mat  files, just like any other variables.  

When you load objects, MATLAB calls the object's class constructor to register the object in the workspace. 
The constructor function for the object class you are loading must be able to be called with no input arguments 
and return a default object. See Guidelines for Writing a Constructor for more information. 

22/32MATLAB 07 

29. 11. 2007



Modifying Objects During Save or Load 

When you issue a save  or load  command on objects, MATLAB looks for class methods called saveobj  and 
loadobj  in the class directory. You can overload these methods to modify the object before the save or load 
operation. For example, you could define a saveobj  method that saves related data along with the object or you 
could write a loadobj  method that updates objects to a newer version when this type of object is loaded into 
the MATLAB workspace.  

Object Precedence 

Object precedence is a means to resolve the question of which of possibly many versions of an operator or 
function to call in a given situation. Object precedence enables you to control the behavior of expressions 
containing different classes of objects. For example, consider the expression 

objectA + objectB 

Ordinarily, MATLAB assumes that the objects have equal precedence and calls the method associated with the 
leftmost object. However, there are two exceptions: 

� User-defined classes have precedence over MATLAB built-in classes.  

� User-defined classes can specify their relative precedence with respect to other user-defined classes using 
the inferiorto  and superiorto  functions. 

For example, in the section Example -- A Polynomial Class the polynom class defines a plus  method that 
enables addition of polynom objects. Given the polynom object p 

p = polynom([1 0 -2 -5]) 
p = 
    x^3-2*x-5 

The expression, 

1 + p 
ans = 
    x^3-2*x-4 

calls the polynom plus  method (which converts the double, 1, to a polynom object, and then adds it to p). The 
user-defined polynom class has precedence over the MATLAB double class. 

Specifying Precedence of User-Defined Classes 

You can specify the relative precedence of user-defined classes by calling the inferiorto  or superiorto  
function in the class constructor. 

The inferiorto  function places a class below other classes in the precedence hierarchy. The calling syntax for 
the inferiorto  function is 

inferiorto('class1','class2',...) 

You can specify multiple classes in the argument list, placing the class below many other classes in the 
hierarchy. 

23/32MATLAB 07 

29. 11. 2007



Similarly, the superiorto  function places a class above other classes in the precedence hierarchy. The calling 
syntax for the superiorto  function is 

superiorto('class1','class2',...) 

Location in the Hierarchy 

If objectA is above objectB in the precedence hierarchy, then the expression 

objectA + objectB 

calls @classA/plus.m . Conversely, if objectB is above objectA in the precedence hierarchy, then MATLAB 
calls @classB/plus.m .  

See How MATLAB Determines Which Method to Call for related information. 

How MATLAB Determines Which Method to Call 

In MATLAB, functions exist in directories in the computer's file system. A directory may contain many 
functions (M-files). Function names are unique only within a single directory (e.g., more than one directory 
may contain a function called pie3 ). When you type a function name on the command line, MATLAB must 
search all the directories it is aware of to determine which function to call. This list of directories is called the 
MATLAB path. 

When looking for a function, MATLAB searches the directories in the order they are listed in the path, and 
calls the first function whose name matches the name of the specified function. 

If you write an M-file called pie3.m  and put it in a directory that is searched before the specgraph directory 
that contains the MATLAB pie3  function, then MATLAB uses your pie3  function instead (note that this is not 
true for built-in functions like plot , which are always found first).  

Object-oriented programming allows you to have many methods (MATLAB functions located in class 
directories) with the same name and enables MATLAB to determine which method to use based on the type or 
class of the variables passed to the function. For example, if p is a portfolio object, then 

pie3(p) 

calls @portfolio/pie3.m  because the argument is a portfolio object. 

Selecting a Method 

When you call a method for which there are multiple versions with the same name, MATLAB determines the 
method to call by: 

� Looking at the classes of the objects in the argument list to determine which argument has the highest 
object precedence; the class of this object controls the method selection and is called the dispatch type.  

� Applying the function precedence order to determine which of possibly several implementations of a 
method to call. This order is determined by the location and type of function. 

Determining the Dispatch Type 

MATLAB first determines which argument controls the method selection. The class type of this argument then 
determines the class in which MATLAB searches for the method. The controlling argument is either: 

24/32MATLAB 07 

29. 11. 2007



� The argument with the highest precedence, or  

� The leftmost of arguments having equal precedence 

User-defined objects take precedence over the MATLAB built-in classes such as double  or char . You can set 
the relative precedence of user-defined objects with the inferiorto  and superiorto  functions, as described in 
Object Precedence. 

MATLAB searches for functions by name. When you call a function, MATLAB knows the name, number of 
arguments, and the type of each argument. MATLAB uses the dispatch type to choose among multiple 
functions of the same name, but does not consider the number of arguments. 

Function Precedence Order 

The function precedence order determines the precedence of one function over another based on the type of 
function and its location on the MATLAB path. From the perspective of method selection, MATLAB contains 
two types of functions: those built into MATLAB, and those written as M-files. MATLAB treats these types 
differently when determining the function precedence order.  

MATLAB selects the correct function for a given context by applying the following function precedence rules, 
in the order given. 

For built-in functions: 

1. Overloaded Methods 

If there is a method in the class directory of the dispatching argument that has the same name as a 
MATLAB built-in function, then this method is called instead of the built-in function. 

2. Nonoverloaded MATLAB Functions 

If there is no overloaded method, then the MATLAB built-in function is called. 

MATLAB built-in functions take precedence over both subfunctions and private functions. Therefore, 
subfunctions or private functions with the same name as MATLAB built-in functions can never be called. 

For nonbuilt-in functions: 

1. Subfunctions 

Subfunctions take precedence over all other M-file functions and overloaded methods that are on the path 
and have the same name. Even if the function is called with an argument of type matching that of an 
overloaded method, MATLAB uses the subfunction and ignores the overloaded method. 

2. Private Functions 

Private functions are called if there is no subfunction of the same name within the current scope. As with 
subfunctions, even if the function is called with an argument of type matching that of an overloaded 
method, MATLAB uses the private function and ignores the overloaded method. 

3. Class Constructor Functions 

Constructor functions (functions having names that are the same as the @ directory, for example 
@polynom/polynom.m ) take precedence over other MATLAB functions. Therefore, if you create an M-
file called polynom.m  and put it on your path before the constructor @polynom/polynom.m  version, 
MATLAB will always call the constructor version. 

25/32MATLAB 07 

29. 11. 2007



4. Overloaded Methods 

MATLAB calls an overloaded method if it is not masked by a subfunction or private function. 

5. Current Directory 

A function in the current working directory is selected before one elsewhere on the path. 

6. Elsewhere On Path 

Finally, a function anywhere else on the path is selected. 

Selecting Methods from Multiple Directories 

There may be a number of directories on the path that contain methods with the same name. MATLAB stops 
searching when it finds the first implementation of the method on the path, regardless of the implementation 
type (MEX-file, P-code, M-file). 

Selecting Methods from Multiple Implementation Types 

There are four file precedence types. MATLAB uses file precedence to select between identically named 
functions in the same directory. The order of precedence for file types is: 

1. MEX-files  

2. MDL-file (Simulink model)  

3. P-code  

4. M-file  

For example, if MATLAB finds a P-code and an M-file version of a method in a class directory, then the P-
code version is used. It is, therefore, important to regenerate the P-code version whenever you edit the M-file. 

Querying Which Method MATLAB Will Call 

You can determine which method MATLAB will call using the which  command. For example,  

which pie3 
your_matlab_path/toolbox/matlab/specgraph/pie3.m 

However, if p is a portfolio object,  

which pie3(p) 
dir_on_your_path/@portfolio/pie3.m % portfolio method 

The which  command determines which version of pie3  MATLAB will call if you passed a portfolio object as 
the input argument. To see a list of all versions of a particular function that are on your MATLAB path, use the 
-all  option. See the which  reference page for more information on this command. 

 
 

disp  

Display text or array 

26/32MATLAB 07 

29. 11. 2007



Syntax 

disp(X) 

Description 

disp(X) displays an array, without printing the array name. If X contains a text string, the string is displayed. 

Another way to display an array on the screen is to type its name, but this prints a leading "X  =,"  which is not 
always desirable. 

Note that disp  does not display empty arrays. 

Examples 

One use of disp  in an M-file is to display a matrix with column labels: 

disp('         Corn         Oats         Hay') 
disp(rand(5,3)) 

which results in 

         Corn         Oats         Hay 
        0.2113        0.8474        0.2749 
        0.0820        0.4524        0.8807 
        0.7599        0.8075        0.6538 
        0.0087        0.4832        0.4899 
        0.8096        0.6135        0.7741 

See Also 

format , int2str , num2str , rats , sprintf  

subsref  
Overloaded method for A(I) , A{I}  and A.field  

Syntax 

B = subsref(A,S) 

Description 

B = subsref(A,S) is called for the syntax A(i) , A{i} , or A.i  when A is an object. S is a structure array with 
the fields  

� type : A string containing '()' , '{}' , or '.' , where '()'  specifies integer subscripts, '{}'  specifies cell 
array subscripts, and '.'  specifies subscripted structure fields.  

� subs : A cell array or string containing the actual subscripts.  

Remarks 

subsref  is designed to be used by the MATLAB interpreter to handle indexed references to objects. Calling 

27/32MATLAB 07 

29. 11. 2007



subsref  directly as a function is not recommended. If you do use subsref  in this way, it conforms to the 
formal MATLAB dispatching rules and can yield unexpected results. 

Examples 

The syntax A(1:2,:)  calls subsref(A,S)  where S is a 1-by-1 structure with S.type='()'  and S.subs=

{1:2,':'} . A colon used as a subscript is passed as the string ':' . 

The syntax A{1:2}  calls subsref(A,S)  where S.type='{}'  and S.subs={1:2} . 

The syntax A.field  calls subsref(A,S)  where S.type='.'  and S.subs='field' . 

These simple calls are combined in a straightforward way for more complicated subscripting expressions. In 
such cases length(S)  is the number of subscripting levels. For instance, A(1,2).name(3:5)  calls subsref

(A,S)  where S is a 3-by-1 structure array with the following values: 
 

See Also  

subsasgn  

See Handling Subscripted Reference for more information about overloaded methods and subsref . 

subsasgn  
Overloaded method for A(I)=B , A{I}=B , and A.field=B  

Syntax 

A = subsasgn(A,S,B) 

Description 

A = subsasgn(A,S,B) is called for the syntax A(i)=B , A{i}=B , or A.i=B  when A is an object. S is a structure 
array with the fields  

� type : A string containing '()' , '{}' , or '.' , where '()'  specifies integer subscripts, '{}'  specifies cell 
array subscripts, and '.'  specifies subscripted structure fields.  

� subs : A cell array or string containing the actual subscripts.  

Remarks 

subsasgn  is designed to be used by the MATLAB interpreter to handle indexed assignments to objects. Calling 
subsasgn  directly as a function is not recommended. If you do use subsasgn  in this way, it conforms to the 
formal MATLAB dispatching rules and can yield unexpected results. 

Examples 

The syntax A(1:2,:)=B  calls A=subsasgn(A,S,B)  where S is a 1-by-1 structure with S.type='()'  and 

S(1).type='()'  S(2).type='.'  S(3).type='()'  

S(1).subs={1,2}  S(2).subs='name'  S(3).subs={3:5}  

28/32MATLAB 07 

29. 11. 2007



S.subs = {1:2,':'} . A colon used as a subscript is passed as the string ':' . 

The syntax A{1:2}=B  calls A=subsasgn(A,S,B)  where S.type='{}' . 

The syntax A.field=B  calls subsasgn(A,S,B)  where S.type='.'  and S.subs='field' . 

These simple calls are combined in a straightforward way for more complicated subscripting expressions. In 
such cases length(S)  is the number of subscripting levels. For instance, A(1,2).name(3:5)=B  calls 
A=subsasgn(A,S,B)  where S is a 3-by-1 structure array with the following values: 
 

See Also  

subsref  

See Handling Subscripted Assignment for more information about overloaded methods and subsasgn . 

end  

Terminate for , while , switch , try , and if  statements or indicate last index 

Syntax 

while expression % (or if, for, or try) 
     statements   
end 
B = A(index:end,index) 

Description 

end  is used to terminate for , while , switch , try , and if  statements. Without an end  statement, for , while , 
switch , try , and if  wait for further input. Each end  is paired with the closest previous unpaired for , while , 
switch , try , or if  and serves to delimit its scope. 

The end  command also serves as the last index in an indexing expression. In that context, end = (size(x,k))  
when used as part of the k th index. Examples of this use are X(3:end)  and X(1,1:2:end-1) . When using end  
to grow an array, as in X(end+1)=5 , make sure X exists first. 

You can overload the end  statement for a user object by defining an end  method for the object. The end  method 
should have the calling sequence end(obj,k,n) , where obj  is the user object, k  is the index in the expression 
where the end  syntax is used, and n is the total number of indices in the expression. For example, consider the 
expression  

A(end-1,:) 

MATLAB will call the end  method defined for A using the syntax 

end(A,1,2) 

Examples 

S(1).type='()'  S(2).type='.'  S(3).type='()'  

S(1).subs={1,2}  S(2).subs='name'  S(3).subs={3:5}  

29/32MATLAB 07 

29. 11. 2007



This example shows end  used with the for  and if  statements. 

for k = 1:n 
    if a(k) == 0 
        a(k) = a(k) + 2; 
    end 
end 

In this example, end  is used in an indexing expression. 

A = magic(5) 
 
A = 
 
    17    24     1     8    15 
    23     5     7    14    16 
     4     6    13    20    22 
    10    12    19    21     3 
    11    18    25     2     9 
 
B = A(end,2:end) 
 
B = 
 
    18    25     2     9 

See Also 

break , for , if , return , switch , try , while  

subsindex  
Overloaded method for X(A)  

Syntax 

ind = subsindex(A) 

Description 

ind = subsindex(A) is called for the syntax 'X(A)'  when A is an object. subsindex  must return the value of 
the object as a zero-based integer index. (ind  must contain integer values in the range 0 to prod(size(X))-1 .) 
subsindex  is called by the default subsref  and subsasgn  functions, and you can call it if you overload these 
functions. 

See Also  

subsasgn , subsref  

double  

Convert to double precision 

Syntax  

30/32MATLAB 07 

29. 11. 2007



double(X)  

Description 

double(x) returns the double-precision value for X. If X is already a double-precision array, double  has no 
effect. 

Remarks 

double  is called for the expressions in for , if , and while  loops if the expression isn't already double-
precision. double  should be overloaded for any object when it makes sense to convert it to a double-precision 
value. 

char  
Create character array (string) 

Syntax 

S = char(X) 
S = char(C) 
S = char(t1,t2,t3...) 

Description 

S = char(X) converts the array X that contains positive integers representing character codes into a MATLAB 
character array (the first 127 codes are ASCII). The actual characters displayed depend on the character set 
encoding for a given font. The result for any elements of X outside the range from 0 to 65535 is not defined 
(and can vary from platform to platform). Use double  to convert a character array into its numeric codes.  

S = char(C), when C is a cell array of strings, places each element of C into the rows of the character array s . 
Use cellstr  to convert back. 

S = char(t1,t2,t3,..) forms the character array S containing the text strings T1,T2,T3,... as rows, 
automatically padding each string with blanks to form a valid matrix. Each text parameter, Ti, can itself be a 
character array. This allows the creation of arbitrarily large character arrays. Empty strings are significant.  

Remarks 

Ordinarily, the elements of A are integers in the range 32:127, which are the printable ASCII characters, or in 
the range 0:255, which are all 8-bit values. For noninteger values, or values outside the range 0:255, the 
characters printed are determined by fix(rem(A,256)) . 

Examples 

To print a 3-by-32 display of the printable ASCII characters, 

ascii = char(reshape(32:127,32,3)') 
ascii = 
! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 :  ; < = > ? 
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y  Z [ \ ] ^ _ 
' a b c d e f g h i j k l m n o p q r s t u v w x y  z { | } ~ 

31/32MATLAB 07 

29. 11. 2007



See Also 

cellstr , double , get , set , strings , strvcat , text  

 

32/32MATLAB 07 

29. 11. 2007


